000891794 001__ 891794
000891794 005__ 20210623133400.0
000891794 0247_ $$2doi$$a10.3390/ma14081990
000891794 0247_ $$2Handle$$a2128/27776
000891794 0247_ $$2pmid$$a33921126
000891794 0247_ $$2WOS$$aWOS:000644553400001
000891794 037__ $$aFZJ-2021-01741
000891794 082__ $$a600
000891794 1001_ $$0P:(DE-HGF)0$$aSpitznagel , Frank A.$$b0$$eCorresponding author
000891794 245__ $$aFailure Load and Fatigue Behavior of Monolithic Translucent Zirconia, PICN and Rapid-Layer Posterior Single Crowns on Zirconia Implants
000891794 260__ $$aBasel$$bMDPI$$c2021
000891794 3367_ $$2DRIVER$$aarticle
000891794 3367_ $$2DataCite$$aOutput Types/Journal article
000891794 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620732043_29692
000891794 3367_ $$2BibTeX$$aARTICLE
000891794 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891794 3367_ $$00$$2EndNote$$aJournal Article
000891794 520__ $$aThis laboratory study aimed to evaluate the thermo-mechanical fatigue behavior and failure modes of monolithic and rapid-layer posterior single-crowns (SCs) supported by zirconia implants. Methods: 120 all-ceramic crowns supported by one-piece zirconia implants (ceramic.implant; vitaclinical) were divided into five groups (n = 24 each): Group Z-HT: 3Y-TZP monolithic-zirconia (Vita-YZ-HT); Group Z-ST: 4Y-TZP monolithic-zirconia (Vita-YZ-ST); Z-XT: 5Y-TZP monolithic-zirconia (Vita-YZ-XT); Group E: monolithic-polymer-infiltrated ceramic network (PICN,Vita-Enamic); Group RL (rapid layer): PICN-“table-top” (Vita-Enamic), 3Y-TZP-framework (Vita-YZ-HT). Half of the specimens of each group (n = 12) were exposed to fatigue with cyclic mechanical loading (F = 198N, 1.2-million cycles) and simultaneous thermocycling (5–55 °C). Single-load-to-failure testing (Z010, Zwick) was performed for all specimens without/with fatigue application. Data analysis was performed using ANOVA, Tukey’s post-hoc test, two-sample t-test and Bonferroni correction (p < 0.05). Results: All specimens survived fatigue exposure. Significant differences in failure loads were detected among groups (p ≤ 0.004). Materials Z-HT and Z-ST showed the highest failure loads followed by Z-XT, RL and E. The influence of fatigue was only significant for material RL. Conclusions: All types of tested materials exceeded clinically acceptable failure load values higher than 900N and can be recommended for clinical use. Z-HT and Z-ST appear to be highly reliable towards fatigue. Rapid-layer design of PICN and YZ-HT might be an interesting treatment concept for posterior implant SCs.Keywords: dental implant; zirconia; ceramics; translucent zirconia; fatigue; failure load; aging; chewing simulation
000891794 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000891794 588__ $$aDataset connected to DataCite
000891794 7001_ $$0P:(DE-HGF)0$$aRöhrig, Sara$$b1
000891794 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b2
000891794 7001_ $$0P:(DE-HGF)0$$aGierthmuehlen, Petra C.$$b3
000891794 773__ $$0PERI:(DE-600)2487261-1$$a10.3390/ma14081990$$n8$$p1990$$tMaterials$$v14$$x1996-1944$$y2021
000891794 8564_ $$uhttps://juser.fz-juelich.de/record/891794/files/Failure%20Load%20and%20Fatigue%20Behavior%20of%20Monolithic%20Translucent.pdf$$yOpenAccess
000891794 909CO $$ooai:juser.fz-juelich.de:891794$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891794 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-04
000891794 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891794 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATERIALS : 2018$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891794 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-04
000891794 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000891794 9141_ $$y2021
000891794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich$$b2$$kFZJ
000891794 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000891794 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000891794 920__ $$lyes
000891794 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000891794 980__ $$ajournal
000891794 980__ $$aVDB
000891794 980__ $$aUNRESTRICTED
000891794 980__ $$aI:(DE-Juel1)INM-7-20090406
000891794 9801_ $$aFullTexts