000891795 001__ 891795
000891795 005__ 20240711085631.0
000891795 0247_ $$2doi$$a10.1039/D0TA11096E
000891795 0247_ $$2ISSN$$a2050-7488
000891795 0247_ $$2ISSN$$a2050-7496
000891795 0247_ $$2Handle$$a2128/27706
000891795 0247_ $$2altmetric$$aaltmetric:98794054
000891795 0247_ $$2WOS$$aWOS:000624755900027
000891795 037__ $$aFZJ-2021-01742
000891795 082__ $$a530
000891795 1001_ $$0P:(DE-Juel1)173936$$aRosen, Melanie$$b0$$eCorresponding author
000891795 245__ $$aControlling the lithium proton exchange of LLZO to enable reproducible processing and performance optimization
000891795 260__ $$aLondon Â[u.a.]Â$$bRSC$$c2021
000891795 3367_ $$2DRIVER$$aarticle
000891795 3367_ $$2DataCite$$aOutput Types/Journal article
000891795 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619531778_16806
000891795 3367_ $$2BibTeX$$aARTICLE
000891795 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891795 3367_ $$00$$2EndNote$$aJournal Article
000891795 520__ $$aCeramic solid state-electrolytes attract significant attention due to their intrinsic safety and, in the case of the garnet type Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO), the possibility to use Li-metal anodes to provide high energy densities on a cell and battery level. However, one of the major obstacles hindering their wide-spread application is the translation and optimization of production processes from laboratory to industrial scale. Even though the plausibility of manufacturing components and cells via wet processing routes like tape casting and screen printing has been shown, the impact of the sensitivity of LLZO to air and protic solvents due to Li+/H+-exchange is not fully understood yet. An uncontrolled alteration of the powder surface results in poorly reproducible processing characteristics and electrochemical performance of the final battery components and full cells. This knowledge gap is the cause of the large performance variations reported across different research labs worldwide and is unacceptable for up-scaling to industrial level. To close this gap, the influence of the Li+/H+-exchange taking place at various steps in the manufacturing process was systematically investigated in this study. For the first time, this allowed a mechanistic understanding of its impact on the processability itself and on the resulting electrochemical performance of a free-standing LLZO separator. The importance of a close control of the pre-treatment and storage conditions of LLZO, as well as contact time with the solvent could be extracted for each step of the manufacturing process. As a result, we were able to optimize the processing of thin, dense, free standing LLZO separators and significantly improve the total Li-ion conductivity to 3.90 × 10−4 S cm−1 and the critical current density to over 300 μA cm−2 without making structural changes to separator or the starting material. These findings do not only enable a deeper understanding and control over the manufacturing process, but also show potential for further improvement of cell concepts already existing in literature.
000891795 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000891795 588__ $$aDataset connected to CrossRef
000891795 7001_ $$0P:(DE-Juel1)176118$$aYe, Ruijie$$b1
000891795 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b2
000891795 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3$$eCorresponding author
000891795 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4
000891795 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b5
000891795 7001_ $$0P:(DE-Juel1)179291$$aMann, Markus$$b6
000891795 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D0TA11096E$$gVol. 9, no. 8, p. 4831 - 4840$$n8$$p4831 - 4840$$tJournal of materials chemistry / A$$v9$$x2050-7496$$y2021
000891795 8564_ $$uhttps://juser.fz-juelich.de/record/891795/files/d0ta11096e.pdf$$yOpenAccess
000891795 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000891795 909CO $$ooai:juser.fz-juelich.de:891795$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000891795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173936$$aForschungszentrum Jülich$$b0$$kFZJ
000891795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176118$$aForschungszentrum Jülich$$b1$$kFZJ
000891795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich$$b2$$kFZJ
000891795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b3$$kFZJ
000891795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000891795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b5$$kFZJ
000891795 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179291$$aForschungszentrum Jülich$$b6$$kFZJ
000891795 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000891795 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000891795 9141_ $$y2021
000891795 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000891795 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000891795 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000891795 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000891795 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891795 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000891795 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000891795 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2019$$d2021-01-28
000891795 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000891795 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-28$$wger
000891795 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2019$$d2021-01-28
000891795 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000891795 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000891795 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000891795 920__ $$lyes
000891795 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000891795 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000891795 9801_ $$aFullTexts
000891795 980__ $$ajournal
000891795 980__ $$aVDB
000891795 980__ $$aUNRESTRICTED
000891795 980__ $$aI:(DE-Juel1)IEK-1-20101013
000891795 980__ $$aI:(DE-82)080011_20140620
000891795 980__ $$aAPC
000891795 981__ $$aI:(DE-Juel1)IMD-2-20101013