000891820 001__ 891820
000891820 005__ 20240709081929.0
000891820 0247_ $$2doi$$a10.1016/j.energy.2021.120384
000891820 0247_ $$2ISSN$$a0360-5442
000891820 0247_ $$2ISSN$$a1873-6785
000891820 0247_ $$2WOS$$aWOS:000649666000002
000891820 037__ $$aFZJ-2021-01745
000891820 041__ $$aEnglish
000891820 082__ $$a600
000891820 1001_ $$0P:(DE-Juel1)174202$$aHering, Dominik$$b0$$eCorresponding author
000891820 245__ $$aDesign optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming
000891820 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000891820 3367_ $$2DRIVER$$aarticle
000891820 3367_ $$2DataCite$$aOutput Types/Journal article
000891820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642754892_7161
000891820 3367_ $$2BibTeX$$aARTICLE
000891820 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891820 3367_ $$00$$2EndNote$$aJournal Article
000891820 500__ $$aKein Zugriff auf Post-print
000891820 520__ $$aDistrict heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.
000891820 536__ $$0G:(DE-HGF)POF4-112$$a112 - Digitalisierung und Systemtechnik (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000891820 588__ $$aDataset connected to CrossRef
000891820 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b1$$ufzj
000891820 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b2$$ufzj
000891820 773__ $$0PERI:(DE-600)2019804-8$$a10.1016/j.energy.2021.120384$$gVol. 226, p. 120384 -$$p120384 -$$tEnergy$$v226$$x0360-5442$$y2021
000891820 909CO $$ooai:juser.fz-juelich.de:891820$$pVDB
000891820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174202$$aForschungszentrum Jülich$$b0$$kFZJ
000891820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b1$$kFZJ
000891820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b2$$kFZJ
000891820 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000891820 9130_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000891820 9141_ $$y2021
000891820 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000891820 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY : 2019$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000891820 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERGY : 2019$$d2021-02-02
000891820 920__ $$lyes
000891820 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000891820 980__ $$ajournal
000891820 980__ $$aVDB
000891820 980__ $$aI:(DE-Juel1)IEK-10-20170217
000891820 980__ $$aUNRESTRICTED
000891820 981__ $$aI:(DE-Juel1)ICE-1-20170217