001     891820
005     20240709081929.0
024 7 _ |a 10.1016/j.energy.2021.120384
|2 doi
024 7 _ |a 0360-5442
|2 ISSN
024 7 _ |a 1873-6785
|2 ISSN
024 7 _ |a WOS:000649666000002
|2 WOS
037 _ _ |a FZJ-2021-01745
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Hering, Dominik
|0 P:(DE-Juel1)174202
|b 0
|e Corresponding author
245 _ _ |a Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642754892_7161
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Kein Zugriff auf Post-print
520 _ _ |a District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.
536 _ _ |a 112 - Digitalisierung und Systemtechnik (POF4-112)
|0 G:(DE-HGF)POF4-112
|c POF4-112
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Xhonneux, André
|0 P:(DE-Juel1)8457
|b 1
|u fzj
700 1 _ |a Müller, Dirk
|0 P:(DE-Juel1)172026
|b 2
|u fzj
773 _ _ |a 10.1016/j.energy.2021.120384
|g Vol. 226, p. 120384 -
|0 PERI:(DE-600)2019804-8
|p 120384 -
|t Energy
|v 226
|y 2021
|x 0360-5442
909 C O |o oai:juser.fz-juelich.de:891820
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174202
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)8457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172026
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-112
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Digitalisierung und Systemtechnik
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERGY : 2019
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21