000891821 001__ 891821
000891821 005__ 20240709082158.0
000891821 0247_ $$2doi$$a10.1016/j.energy.2021.120140
000891821 0247_ $$2ISSN$$a0360-5442
000891821 0247_ $$2ISSN$$a1873-6785
000891821 0247_ $$2WOS$$aWOS:000640927500010
000891821 037__ $$aFZJ-2021-01746
000891821 082__ $$a600
000891821 1001_ $$0P:(DE-Juel1)174202$$aHering, Dominik$$b0$$eCorresponding author
000891821 245__ $$aTemperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming
000891821 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000891821 3367_ $$2DRIVER$$aarticle
000891821 3367_ $$2DataCite$$aOutput Types/Journal article
000891821 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1643027379_6536
000891821 3367_ $$2BibTeX$$aARTICLE
000891821 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891821 3367_ $$00$$2EndNote$$aJournal Article
000891821 500__ $$aKein Zugriff auf Post-print
000891821 520__ $$aDistrict heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With an increasing share of uncontrolled heat sources in district heating networks, control strategies to coordinate energy supply and network operation become more important. This paper focuses on the modeling, control, and optimization of a low-temperature district heating network, presenting a case study with a high share of waste heat from high-performance computers. The network consists of heat pumps with temperature-dependent characteristics. In this paper, quadratic correlations are used to model temperature characteristics. Thus, a mixed-integer quadratically-constrained program is presented that optimizes the operation of heat pumps in combination with thermal energy storages and the operating temperatures of a pipe network. The network operation is optimized for three sample days. The presented optimization model uses the flexibility of the thermal energy storages and thermal inertia of the network by controlling its flow and return temperatures. The results show savings of electrical energy consumption of 1.55%–5.49%, depending on heat and cool demand.
000891821 536__ $$0G:(DE-HGF)POF4-112$$a112 - Digitalisierung und Systemtechnik (POF4-112)$$cPOF4-112$$fPOF IV$$x0
000891821 588__ $$aDataset connected to CrossRef
000891821 7001_ $$0P:(DE-HGF)0$$aCansev, Mehmet Ege$$b1
000891821 7001_ $$0P:(DE-HGF)0$$aTamassia, Eugenio$$b2
000891821 7001_ $$0P:(DE-Juel1)8457$$aXhonneux, André$$b3$$ufzj
000891821 7001_ $$0P:(DE-Juel1)172026$$aMüller, Dirk$$b4$$ufzj
000891821 773__ $$0PERI:(DE-600)2019804-8$$a10.1016/j.energy.2021.120140$$gVol. 224, p. 120140 -$$p120140 -$$tEnergy$$v224$$x0360-5442$$y2021
000891821 909CO $$ooai:juser.fz-juelich.de:891821$$pVDB
000891821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174202$$aForschungszentrum Jülich$$b0$$kFZJ
000891821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)8457$$aForschungszentrum Jülich$$b3$$kFZJ
000891821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172026$$aForschungszentrum Jülich$$b4$$kFZJ
000891821 9131_ $$0G:(DE-HGF)POF4-112$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vDigitalisierung und Systemtechnik$$x0
000891821 9130_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000891821 9141_ $$y2021
000891821 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000891821 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY : 2019$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000891821 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERGY : 2019$$d2021-02-02
000891821 920__ $$lyes
000891821 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000891821 980__ $$ajournal
000891821 980__ $$aVDB
000891821 980__ $$aI:(DE-Juel1)IEK-10-20170217
000891821 980__ $$aUNRESTRICTED
000891821 981__ $$aI:(DE-Juel1)ICE-1-20170217