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ABSTRACT

Atomic layer deposition (ALD) offers a low thermal budget method for producing α-Ga2O3 films on sapphire
substrate. In this paper we review the recent progress on plasma-enhanced ALD growth of α-Ga2O3 and present
the optical and photoconductive properties of deposited films. We show that the deposited material exhibits
an epitaxial relationship with the sapphire substrate, and where the film-substrate interface is atomically sharp.
The α-Ga2O3 films had an optical bandgap energy measured at 5.11 eV, and exhibited a broad luminescence
spectrum dominated by ultraviolet, blue and green bands, in line with current literature. We finally demonstrate
the suitability of the material for solar-blind photodetection.
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1. INTRODUCTION

Gallium oxide (Ga2O3) has recently emerged as a wide bandgap semiconductor with promising applications for
high power and high frequency electronics, as well as ultraviolet optoelectronics.1 This compound is a polymor-
phic sesquioxide, with reported phases labelled α, β, ε, κ, and γ2,3 – with the ε, κ phases being ordered and
disordered variants.4 The monoclinic β-Ga2O3 is the only thermodynamically stable polymorph, and has there-
fore attracted most research interest to date. The rhombohedral α-phase is metastable, but presents several assets
for device applications. For example α-Ga2O3 exhibits the widest bandgap energy (ca. 5-5.3 eV5–8) amongst
all phases of Ga2O3, making it interesting for power electronic applications. Moreover, it is isostructural with
several other semiconducting sesquioxides, therefore exhibiting strong promises for bandgap and functionality
engineering through alloying with e.g. Al2O3,9 In2O3,9 Cr2O3,10 Fe2O3,11 Ti2O3,12 or Rh2O3.13

Due to its metastability, progress in α-Ga2O3 synthesis only arose recently. In recently years, films of α-
Ga2O3 have successfully been deposited at temperatures in the range of 550-700 ◦C using mist chemical vapour
deposition (mist-CVD),5,9 halide vapour phase epitaxy (HVPE),14–16 metalorganic chemical vapour deposition
(MOCVD),6,17 or molecular beam epitaxy (MBE).18,19 In comparison, plasma-enhanced atomic layer deposition
(PEALD)7,8, 20–22 allows the deposition of crystalline α-Ga2O3 material at much lower temperatures, nearing
250-300 ◦C. In this paper we review the conditions for growing α-phase Ga2O3 by PEALD and present the
optical and photoelectric properties of the films.
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2. METHODS

Undoped Ga2O3 films were deposited on c-plane sapphire substrates with a 0.25 ± 0.10◦ miscut towards (112̄0)
using an Oxford Instruments OpAL PEALD reactor. Adduct grade triethylgallium (TEGa) and dry O2 were used
as the gallium and oxygen source, respectively, while argon was used for chamber purges and as the precursor
carrier gas. Several sets of samples were grown, to investigate the impact of substrate temperature, O2 flow and
plasma power on the crystallinity of the Ga2O3 films. Table 1 lists the experimental conditions used in each set.

The following conditions were kept constant between growth sets: 0.1 s TEGa dose, 5 s TEGa purge, 5 s O2

plasma duration, 5 s O2 plasma purge. 100 sccm Ar was used as a carrier gas during the TEGa dose and as the
purge gas to remove unreacted precursors from the chamber during the purge steps. The base pressure in the
chamber (with no process gases flowing) was ca. 10 mTorr. During the deposition processes the chamber pressure
varied between ca. 80 mTorr (during the plasma steps) and 160 mTorr (during the TEGa dose). The TEGa
source was maintained at 30◦C, with line temperatures into the reactor chamber held at 80◦C and 90◦C. For
the lowest temperature deposition (120◦C substrate) the chamber walls were held at 125◦C, while the chamber
walls were set at 150◦C for all other growths. 500 cycles were used for the growth of each film, resulting in a
film thickness of approximately 25 nm. Finally, a thicker sample (4700 cycles, ca. 250 nm thick) was deposited
using the optimal conditions listed in Table 1.

The structure of the samples was investigated by X-ray diffraction (XRD) using a PANalytical Empyrean
diffractometer with a Cu Kα1 X-ray source. A two-bounce Ge analyser was used for 2θ-ω scans, and a PIXcel
detector was used to acquire reciprocal space maps. The atomic structure of the samples was observed using high-
angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) in an aberration-corrected
FEI Titan operated at 200 kV.23 The optical bandgap of the material was obtained using a Shimadzu UV-2600
UV-vis transmittance spectrophotometer equipped with an integrating sphere. The luminescence properties were
obtained using room temperature cathodoluminescence (CL) in a JEOL JXA-8530F field-emission electron probe
microanalyser (EPMA) operated at 5 kV. Finally, photoelectric characterisation was performed using a Signatone
probe station equipped with a Thorlabs Deuterium light source coupled to a SolarLS ML44 monochromator to
illuminate the sample with a monochromatic light.

3. RESULTS AND DISCUSSION

3.1 Growth

The impact of the substrate temperature, O2 flow and plasma power on the resulting phase of the thin films
was investigated by means of XRD. The results are summarised in Figure 1. The intense peak at 2θ = 41.68◦

visible in all the diffractograms corresponds to the α-Al2O3 0006 reflection from the substrate. The α-Ga2O3

0006 reflection occurs near 2θ = 40.25◦, which is the value for relaxed α-Ga2O3.24 Small deviations in peak
position can be ascribed to strain in the film. Peaks occurring at lower angles (2θ = 38 − 39◦) correspond to
reflections from other phases of Ga2O3 – in particular β- and ε-Ga2O3 exhibit several reflections in that range.

Table 1. Summary of samples sets and growth conditions investigated.

Sample set
Approx. Substrate O2 flow O2 plasma

thickness (nm) temperature (◦C) (sccm) power (W)

Temperature 25
120, 150, 200, 250,

20 300
300, 350, 400, 450

O2 flow 25 250
10, 20, 40,

300
60, 100

Plasma power 25 250 20
25, 50, 100

200, 300

Optimal 250 250 20 300



Figure 1. XRD 2θ-ω scans of the samples grown under various (a) temperature, (b) O2 flow, and (c) O2 plasma power.

We note that the substrate temperature seems to have the dominant impact on the crystallinity of the
deposited film – as illustrated in Figure 1(a). For temperatures below 200◦C, no film reflection could be observed,
indicating that the films are amorphous. This is in line with previous work which also reported amorphous
materials at such low temperature,21,25 in particular Borujeny et al. identified 190◦C as the onset temperature
for deposition of crystalline Ga2O3 on sapphire by PEALD.21 For substrate temperatures in the range of 200-
350◦C, the diffractograms exhibit an α-Ga2O3 0006 reflection. Fringes on either side of the peak are indicative of
the film thickness and warrant a uniform thickness and good crystalline quality of the deposited material. We find
that 250-300◦C seems to the optimal temperature for α-Ga2O3 deposition by PEALD. Other studies have also
reported α-Ga2O3 growth by ALD on sapphire in that temperature window.8,20–22 For substrate temperatures
above 400◦C, we can observe a noticeable quenching of the intensity of the α-Ga2O3 0006 reflection and the
appearance of reflections near 2θ = 38−39◦ – in agreement with other studies.8,21 This is indicative that growth
at such temperatures favours the β- and ε-phases which are more stable than α-Ga2O3.26

When grown at 250◦C we find that, over the range of values investigated, the O2 flow and plasma power
seem to have a negligible effect on the resulting phase of the film. As seen in Figure 1(b-c) all the films were
α-Ga2O3. Minor variations in peak position could be ascribed to variations in the strain state of the films. It
should be pointed out that this result is in contrast with Wheeler et al. who found that the plasma conditions
offer wide scope for tuning the phase of the film.8 We point out, however, that Wheeler et al.’s study used
different precursors and different pressure during plasma than our present work. The use of PEALD offers even
further possibilities as a study from Ilhom et al. recently reported that in situ Ar plasma annealing at the end
of every PEALD cycle could be used to produce β-phase Ga2O3 on sapphire as well as other substrates (Si,
glass).27

Lastly, we note that the growth of the aforementioned samples was also conducted on silicon substrates,

Figure 2. (a) HAADF-STEM image of the film, and (b) film-substrate interface. (c) Zoomed-in image of the region
squared in (b), with crystal model overlay (blue: Ga; red: Al; yellow: O). All images were observed along the 〈112̄0〉 zone
axis.



and that all these films deposited on silicon were amorphous. This is in line with earlier literature on Ga2O3

deposition by ALD28–30 (with the exception of Ilhom et al. who used an extra plasma step to crystallise the
films27). This highlights that the sapphire substrate plays a critical role in stabilising the corundum phase – as
expected owing to its similar crystal structure and relatively low lattice mistmatch of about 4.8% with α-Ga2O3.
We illustrate the importance of the sapphire substrate in Figure 2, which depicts cross-sectional aberration-
corrected HAADF-STEM images of the thick Ga2O3 film. We note the columnar structure of the film, with
all columns starting at the film-substrate interface, and propagating though the whole layer (Figure 2(a)). The
several columns illustrate the mosaicity of the film, which has also been reported in α-Ga2O3 films grown using
other methods.14,31 Regions of different contrast have been identified as amorphous and ε-Ga2O3 inclusions.20

Figure 2(b-c) provide a high resolution image of the film-substrate interface, where the sharpness of the interface
and epitaxial growth of the film on the sapphire substrate can be clearly observed.

3.2 Optical properties

UV-vis transmittance spectroscopy was used to measure the optical bandgap of the thick film. The transmittance
of the film in the 200-700 nm wavelength range is presented in Figure 3(a), where a sharp increase in transmittance
can be observed in the 230-280 nm region. Using the Tauc plot (αhν)2 vs hν (inset of Figure 3(a)) to estimate
the direct bandgap energy of the film, as is conventionally used with this material,6–8,14,19 we obtain an optical
bandgap of 5.11 eV, which is well within the 5-5.3 eV range of values reported in the literature.5–8,12,14,19

Room temperature CL was conducted to assess the luminescence properties of the thick film. The resulting
CL spectrum is shown in Figure 3(b). In agreement with the literature, no band edge emission could be
observed. Instead, the CL spectrum exhibits a broad emission spectrum from which four main components
can be distinguished. We observed bands at 350 nm (ca. 3.5 eV), 390 nm (ca. 3.2 eV), 470 nm (ca. 2.6 eV),
565 nm (ca. 2.2 eV), as well as a tail that extends to even longer wavelengths. The CL spectrum present some
similarities with the CL data obtained by Polyakov et al. on HVPE-grown Sn-doped α-Ga2O3.32 However in
our study, the samples are nominally undoped so we would not expect to see strong Sn-related luminescence as
any Sn in the film (if any) should be in trace amount. Literature on luminescence of α-Ga2O3 is scarce,32,33

we therefore turn our attention to the literature on β-Ga2O3 to try to assess the origin of the luminescence in
our sample. Luminescence of β-Ga2O3 generally exhibits mainly UV (3.2–3.6 eV), blue (2.8–3.0 eV) and green
(2.5 eV) lines,34–36 but a red (1.7–1.9 eV) line has also been reported.37–39 The UV line as been ascribed to
recombination between free electrons and self-trapped holes (STH), while the other lines relate to donor acceptor
pair recombination involving a range of intrinsic (e.g. VO, VGa, Gai) or extrinsic (e.g. SiGa, NO) defects. While
we here expect limited contribution from extrinsic defects, the luminescence we observe in Figure 3(b) is aligned
with the main luminescence lines reported in β-Ga2O3, which we therefore tentatively ascribe to electron-STH

Figure 3. (a) UV-vis transmittance spectrum of the thick α-Ga2O3 film, with Tauc plot in inset. (b) Room temperature
CL spectrum of the thick α-Ga2O3 film.



Figure 4. I-V characteristic of the thick α-Ga2O3 film tested under 240 nm, 350 nm and dark illumination. In insets,
240 nm photoconduction transient, and scanning electron microscope image of the contact structure used.

recombination (350 nm line) and donor acceptor pair recombinations (390 nm, 470 nm, 565 nm lines). Further
work would nevertheless be necessary to ascertain the exact defects involved.

3.3 Solar-blind photodetectors

To test the suitability of the material for solar-blind detection, circular Ti/Au electrodes ca. 180 µm in diameter
and spaced ca. 500 µm apart (as shown in the scanning electron microscopy image in inset of Figure 4) were
deposited onto the thick α-Ga2O3 film using UV photolithography and thermal evaporation. Figure 4 shows the
photocurrent and transient characteristics when the device is illuminated under light at 240 nm, 350 nm, and
in the dark. A clear increase in photocurrent can be observed when the film is illuminated by above bandgap
light (i.e. 240 nm), as opposed to below bandgap illumination (i.e. 350 nm) or dark conditions. At 10 V bias,
the photocurrent under 240 nm illumination is measured at 1.2 nA for a dark current of ca. 6 pA resulting
in a photo-to-dark-current-ratio (PDCR) of about 220. It should be noted that the dark current has a low
accuracy because it is limited by the source meter’s detection limit and noise, moreover the photocurrent could
be increased if the electrode structure were optimised (i.e. interdigitated electrodes). This result nevertheless
demonstrates the suitability of ALD-grown α-Ga2O3 for solar-blind sensing. Previous studies on ALD-grown
α-Ga2O3 photodetectors22,40 reported responsivities nearing 1 A.W−1 that are well within the range of respon-
sivities reported for detectors obtained using different growth methods, and based on other more mature phases
of Ga2O3.41

With regards to time response, our data show a relatively slow rise and decay, but still in agreement with
literature values for Ga2O3 detectors (all phases included).41 Using a bi-exponential fit for the rise and decay
response (shown in inset of Figure 4) we obtained a time constant of 2.8 s and 12.1 s for the fast and slow rise com-
ponents, respectively, and 1.0 s and 11.8 s for the fast and slow decay components, respectively. The particularly
slow response of Ga2O3 photodetector devices has been ascribed to the accumulation of self-trapped holes at the
semiconductor/metal interface.42,43 It should be noted that Lee et al. reported ultrafast, sub-microsecond re-
sponse time for ALD-grown α-Ga2O3-based photodetectors22 which is amongst the fastest performance obtained
so far in the field.

4. CONCLUSION

In this paper we have reviewed the recent progress with using PEALD growth for the growth of α-Ga2O3 with a
very low thermal budget in comparison to other growth methods. We reported that the substrate temperature,
plasma conditions, and substrate play a determining role in the resulting phase of the film. We went on presenting
the optical and photoelectric properties of thick α-Ga2O3 film grown under the optimal conditions. The optical
bandgap energy was measured at 5.11 eV, and CL measurement showed a broad luminescence spectrum consisting



of ultraviolet, blue and green bands, in line with current literature. We finally demonstrated that ALD-grown α-
Ga2O3 films are suitable for solar-blind photodetection and exhibit performances in par with other more mature
phases of Ga2O3.
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