001     891836
005     20240708132846.0
024 7 _ |a 10.1142/S012908351850002X
|2 doi
024 7 _ |a 0129-0835
|2 ISSN
024 7 _ |a 1793-6616
|2 ISSN
037 _ _ |a FZJ-2021-01759
082 _ _ |a 530
100 1 _ |a Yoshino, K.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Lithium distribution analysis in all-solid-state lithium battery using microbeam particle-induced X-ray emission and particle-induced gamma-ray emission techniques
260 _ _ |a Singapore
|c 2017
|b World Scientific
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1625910999_19248
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For confirming the feasibility of micrometer scale analysis of lithium distribution in the all-solid-state lithium battery using a sulfide-based solid electrolyte, the cross-section of pellet type battery was analyzed by microbeam particle-induced X-ray emission (PIXE) and particle-induced gamma-ray emission (PIGE) measurements. A three-layered pellet-type battery (cathode: LiNbO3-coated LiCoO2+Li10GeP2S12/solid electrolyte: Li10GeP2S12/anode: TiS2+Li10GeP2S12) was prepared for the measurements. Via elemental mapping of the cross-section of the prepared battery, the difference in the yields of gamma rays from the 7Li(p,p′γ)7Li inelastic scattering (i.e., the lithium concentrations) between the composite electrodes and the solid electrolyte layer was clarified. The difference in the number of lithium ions at the composite anode/solid electrolyte interface of (Δn=0.26×10−4 mol) in the battery can be clearly detected by the microbeam PIGE technique. Therefore, lithium distribution analysis with a micrometer-scale spatial resolution is demonstrated. Further analysis of the cathode/anode composite electrodes with the different states of charge could provide important information to design a composite for high-performance all-solid-state lithium batteries.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Suzuki, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yamada, Y.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Satoh, T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Finsterbusch, M.
|0 P:(DE-Juel1)145623
|b 4
|e Corresponding author
|u fzj
700 1 _ |a Fujita, K.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kamiya, T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Yamazaki, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mima, K.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hirayama, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kanno, R.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1142/S012908351850002X
|g Vol. 27, no. 01n02, p. 11 - 20
|0 PERI:(DE-600)2093294-7
|n 01n02
|p 11 - 20
|t International journal of PIXE
|v 27
|y 2017
|x 1793-6616
909 C O |o oai:juser.fz-juelich.de:891836
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145623
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21