001     891842
005     20240712101041.0
024 7 _ |a 10.1016/j.scib.2020.02.006
|2 doi
024 7 _ |a 1001-6538
|2 ISSN
024 7 _ |a 1861-9541
|2 ISSN
024 7 _ |a 2095-9273
|2 ISSN
024 7 _ |a 2095-9281
|2 ISSN
024 7 _ |a WOS:000528833400012
|2 WOS
037 _ _ |a FZJ-2021-01765
082 _ _ |a 500
100 1 _ |a Wang, Haichao
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Wintertime N2O5 uptake coefficients over the North China Plain
260 _ _ |a [S.l.]
|c 2020
|b Science China Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1620113500_3737
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Kein Post-print vorhanden
520 _ _ |a The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) plays an important role in regulating NOx. The N2O5 uptake coefficient, γ(N2O5), was determined using an iterative box model that was constrained to observational data obtained in suburban Beijing from February to March 2016. The box model determined 2289 individual γ(N2O5) values that varied from <0.001 to 0.02 with an average value of 0.0046 ± 0.0039 (and a median value of 0.0032). We found the derived winter γ(N2O5) values in Beijing were relatively low as compared to values reported in previous field studies conducted during winter in Hong Kong (average value of 0.014) and the eastern U.S. coast (median value of 0.0143). In our study, field evidence of the suppression of γ(N2O5) values due to pNO3− content, organics and the enhancement by aerosol liquid water content (ALWC) is in line with previous laboratory study results. Low ALWC, high pNO3− content, and particle morphology (inorganic core with an organic shell) accounted for the low γ(N2O5) values in the North China Plain (NCP) during wintertime. The field-derived γ(N2O5) values are well reproduced by a revised parameterization method, which includes the aerosol size distribution, ALWC, nitrate and organic coating, suggesting the feasibility of comprehensive parameterization in the NCP during wintertime.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chen, Xiaorui
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lu, Keding
|0 P:(DE-Juel1)6776
|b 2
|e Corresponding author
700 1 _ |a Tan, Zhaofeng
|0 P:(DE-Juel1)173726
|b 3
|u fzj
700 1 _ |a Ma, Xuefei
|0 P:(DE-Juel1)168298
|b 4
700 1 _ |a Wu, Zhijun
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Li, Xin
|0 P:(DE-Juel1)6775
|b 6
|u fzj
700 1 _ |a Liu, Yuhan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Shang, Dongjie
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wu, Yusheng
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zeng, Limin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Hu, Min
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Schmitt, Sebastian
|0 P:(DE-Juel1)161557
|b 12
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 13
|u fzj
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 14
|u fzj
700 1 _ |a Zhang, Yuanhang
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1016/j.scib.2020.02.006
|g Vol. 65, no. 9, p. 765 - 774
|0 PERI:(DE-600)2816140-3
|n 9
|p 765 - 774
|t Science bulletin
|v 65
|y 2020
|x 2095-9273
856 4 _ |u https://juser.fz-juelich.de/record/891842/files/35AFAD550B044E5D9B549FC4B5C67478.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:891842
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173726
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)6775
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)4528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)16324
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Tropospheric trace substances and their transformation processes
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI BULL : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI BULL : 2019
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21