000891844 001__ 891844
000891844 005__ 20210623131755.0
000891844 0247_ $$2doi$$a10.1021/acsnano.0c07359
000891844 0247_ $$2ISSN$$a1936-0851
000891844 0247_ $$2ISSN$$a1936-086X
000891844 0247_ $$2Handle$$a2128/27649
000891844 0247_ $$2altmetric$$aaltmetric:97097879
000891844 0247_ $$2pmid$$a33393769
000891844 0247_ $$2WOS$$aWOS:000613942700061
000891844 037__ $$aFZJ-2021-01767
000891844 041__ $$aEnglish
000891844 082__ $$a540
000891844 1001_ $$0P:(DE-Juel1)172685$$aLeffler, Vanessa$$b0
000891844 245__ $$aNanoparticle Heat-Up Synthesis: In Situ X-ray Diffraction and Extension from Classical to Nonclassical Nucleation and Growth Theory
000891844 260__ $$aWashington, DC$$bSoc.$$c2021
000891844 3367_ $$2DRIVER$$aarticle
000891844 3367_ $$2DataCite$$aOutput Types/Journal article
000891844 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618923492_19083
000891844 3367_ $$2BibTeX$$aARTICLE
000891844 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891844 3367_ $$00$$2EndNote$$aJournal Article
000891844 520__ $$aHeat-up synthesis routes are very commonly used for the controlled large-scale production of semiconductor and magnetic nanoparticles with narrow size distribution and high crystallinity. To obtain fundamental insights into the nucleation and growth kinetics is particularly demanding, because these procedures involve heating to temperatures above 300 °C. We designed a sample environment to perform in situ SAXS/WAXS experiments to investigate the nucleation and growth kinetics of iron oxide nanoparticles during heat-up synthesis up to 320 °C. The analysis of the growth curves for varying heating rates, Fe/ligand ratios, and plateau temperatures shows that the kinetics proceeds via a characteristic sequence of three phases: an induction Phase I, a final growth Phase III, and an intermediate Phase II, which can be divided into an early phase with the evolution and subsequent dissolution of an amorphous transient state, and a late phase, where crystalline particle nucleation and aggregation occurs. We extended classical nucleation and growth theory to account for an amorphous transient state and particle aggregation during the nucleation and growth phases. We find that this nonclassical theory is able to quantitatively describe all measured growth curves. The model provides fundamental insights into the underlying kinetic processes especially in the complex Phase II with the occurrence of a transient amorphous state, the nucleation of crystalline primary particles, particle growth, and particle aggregation proceeding on overlapping time scales. The described in situ experiments together with the extension of the classical nucleation and growth model highlight the two most important features of nonclassical nucleation and growth routes, i.e., the formation of intermediate or transient species and particle aggregation processes. They thus allow us to quantitatively understand, predict, and control nanoparticle nucleation and growth kinetics for a wide range of nanoparticle systems and synthetic procedures.
000891844 536__ $$0G:(DE-HGF)POF4-535$$a535 - Materials Information Discovery (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000891844 588__ $$aDataset connected to CrossRef
000891844 7001_ $$0P:(DE-Juel1)172686$$aEhlert, Sascha$$b1
000891844 7001_ $$0P:(DE-Juel1)173853$$aFörster, Beate$$b2
000891844 7001_ $$0P:(DE-Juel1)172746$$aDulle, Martin$$b3
000891844 7001_ $$0P:(DE-Juel1)172658$$aFörster, Stephan$$b4$$eCorresponding author
000891844 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.0c07359$$gVol. 15, no. 1, p. 840 - 856$$n1$$p840 - 856$$tACS nano$$v15$$x1936-086X$$y2021
000891844 8564_ $$uhttps://juser.fz-juelich.de/record/891844/files/acsnano.0c07359.pdf
000891844 8564_ $$uhttps://juser.fz-juelich.de/record/891844/files/Leffler_kinetics_MS_rev.pdf$$yPublished on 2021-01-04. Available in OpenAccess from 2022-01-04.
000891844 909CO $$ooai:juser.fz-juelich.de:891844$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172685$$aForschungszentrum Jülich$$b0$$kFZJ
000891844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172686$$aForschungszentrum Jülich$$b1$$kFZJ
000891844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173853$$aForschungszentrum Jülich$$b2$$kFZJ
000891844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172746$$aForschungszentrum Jülich$$b3$$kFZJ
000891844 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172658$$aForschungszentrum Jülich$$b4$$kFZJ
000891844 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000891844 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000891844 9141_ $$y2021
000891844 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000891844 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000891844 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000891844 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000891844 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000891844 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2019$$d2021-01-29
000891844 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000891844 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2019$$d2021-01-29
000891844 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000891844 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000891844 920__ $$lyes
000891844 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000891844 980__ $$ajournal
000891844 980__ $$aVDB
000891844 980__ $$aUNRESTRICTED
000891844 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000891844 9801_ $$aFullTexts