000891848 001__ 891848
000891848 005__ 20220930130313.0
000891848 0247_ $$2doi$$a10.1088/2399-6528/abf6e9
000891848 0247_ $$2Handle$$a2128/27711
000891848 0247_ $$2WOS$$aWOS:000641855700001
000891848 037__ $$aFZJ-2021-01768
000891848 082__ $$a530
000891848 1001_ $$0P:(DE-Juel1)130749$$aKang, Kyongok$$b0$$eCorresponding author
000891848 245__ $$aResponse of shear in bulk orientations of charged DNA rods: Taylor- and gradient-banding
000891848 260__ $$aPhiladelphia, PA$$bIOP Publishing Ltd.$$c2021
000891848 3367_ $$2DRIVER$$aarticle
000891848 3367_ $$2DataCite$$aOutput Types/Journal article
000891848 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619686531_26917
000891848 3367_ $$2BibTeX$$aARTICLE
000891848 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891848 3367_ $$00$$2EndNote$$aJournal Article
000891848 520__ $$aShear-induced instabilities leading to various kinds of inhomogeneous flow profiles play an important role in the processing of complex fluids, ranging from polymeric materials to various types of biological systems. In previously studied systems, either Taylor banding, or gradient banding, or fracture is observed. In the present work we study a system for which all instabilities occur in orientation textures (OTs), and where Taylor banding occurs simultaneously with gradient banding. The system here consists of crowded suspensions of long and thin DNA-based rods (at a low ionic strength of 0.16 mM salt), where the applied shear rate is systematically varied, for concentrations well below and above the glass-transition concentration (12.4 mg ml−1). To simultaneously measure the velocity profile along the gradient direction, in fracture and gradient banding, the optical cell is placed in a specially designed heterodyne light scattering set up, where the scattering volume can be scanned across the cell gap. The results confirm that Taylor bands and gradient banding occur in the concentration of DNA rods and applied shear-rates (35–80 s−1). Taylor bands clearly show the flow access in vorticity-direction, while the gradient banding is rearranged as thick rolling flows of OTs, at the middle shear-rate (50 s−1). The observations can be then useful to facilitate other biological complex fluids and the glass-forming liquids.
000891848 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000891848 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000891848 773__ $$0PERI:(DE-600)2905152-6$$a10.1088/2399-6528/abf6e9$$gVol. 5, no. 4, p. 045011 -$$n4$$p045011 -$$tJournal of physics communications$$v5$$x2399-6528$$y2021
000891848 8564_ $$uhttps://juser.fz-juelich.de/record/891848/files/Invoice_8174783.pdf
000891848 8564_ $$uhttps://juser.fz-juelich.de/record/891848/files/Kang_2021_J._Phys._Commun._5_045011.pdf$$yOpenAccess
000891848 8767_ $$88174783$$92021-04-13$$d2021-04-19$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200166284 / 2021
000891848 909CO $$ooai:juser.fz-juelich.de:891848$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000891848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130749$$aForschungszentrum Jülich$$b0$$kFZJ
000891848 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000891848 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000891848 9141_ $$y2021
000891848 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-08
000891848 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891848 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-08
000891848 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-08
000891848 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-08
000891848 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-08
000891848 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891848 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-08
000891848 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-08
000891848 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-09-08
000891848 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-08
000891848 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-08
000891848 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000891848 980__ $$ajournal
000891848 980__ $$aVDB
000891848 980__ $$aUNRESTRICTED
000891848 980__ $$aI:(DE-Juel1)IBI-4-20200312
000891848 980__ $$aAPC
000891848 9801_ $$aAPC
000891848 9801_ $$aFullTexts