000891856 001__ 891856
000891856 005__ 20240610121041.0
000891856 0247_ $$2doi$$a10.1007/JHEP04(2021)086
000891856 0247_ $$2ISSN$$a1029-8479
000891856 0247_ $$2ISSN$$a1126-6708
000891856 0247_ $$2ISSN$$a1127-2236
000891856 0247_ $$2Handle$$a2128/27653
000891856 0247_ $$2WOS$$aWOS:000639403500001
000891856 0247_ $$2altmetric$$aaltmetric:93633012
000891856 037__ $$aFZJ-2021-01776
000891856 082__ $$a530
000891856 1001_ $$00000-0003-3520-7389$$aShi, Yu-Ji$$b0$$eCorresponding author
000891856 245__ $$aTwo-meson form factors in unitarized chiral perturbation theory
000891856 260__ $$a[Trieste]$$bSISSA$$c2021
000891856 3367_ $$2DRIVER$$aarticle
000891856 3367_ $$2DataCite$$aOutput Types/Journal article
000891856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1618925456_19474
000891856 3367_ $$2BibTeX$$aARTICLE
000891856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891856 3367_ $$00$$2EndNote$$aJournal Article
000891856 520__ $$aWe present a comprehensive analysis of form factors for two light pseudoscalar mesons induced by scalar, vector, and tensor quark operators. The theoretical framework is based on a combination of unitarized chiral perturbation theory and dispersion relations. The low-energy constants in chiral perturbation theory are fixed by a global fit to the available data of the two-meson scattering phase shifts. Each form factor derived from unitarized chiral perturbation theory is improved by iteratively applying a dispersion relation. This study updates the existing results in the literature and explores those that have not been systematically studied previously, in particular the two-meson tensor form factors within unitarized chiral perturbation theory. We also discuss the applications of these form factors as mandatory inputs for low-energy phenomena, such as the semi-leptonic decays Bs → π+π−ℓ+ℓ− and the τ lepton decay τ → π−π0ντ, in searches for physics beyond the Standard Model.
000891856 536__ $$0G:(DE-HGF)POF4-511$$a511 - Enabling Computational- Data-Intensive Science and Engineering (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891856 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000891856 588__ $$aDataset connected to CrossRef
000891856 7001_ $$0P:(DE-HGF)0$$aSeng, Chien-Yeah$$b1
000891856 7001_ $$0P:(DE-HGF)0$$aGuo, Feng-Kun$$b2
000891856 7001_ $$0P:(DE-HGF)0$$aKubis, Bastian$$b3
000891856 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b4
000891856 7001_ $$0P:(DE-HGF)0$$aWang, Wei$$b5
000891856 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP04(2021)086$$gVol. 2021, no. 4, p. 86$$n4$$p86$$tJournal of high energy physics$$v2021$$x1029-8479$$y2021
000891856 8564_ $$uhttps://juser.fz-juelich.de/record/891856/files/2011.00921.pdf$$yOpenAccess
000891856 8564_ $$uhttps://juser.fz-juelich.de/record/891856/files/Shi2021_Article_Two-mesonFormFactorsInUnitariz.pdf$$yOpenAccess
000891856 909CO $$ooai:juser.fz-juelich.de:891856$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b4$$kFZJ
000891856 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000891856 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891856 9141_ $$y2021
000891856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000891856 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891856 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2019$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891856 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000891856 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-30
000891856 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000891856 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000891856 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000891856 9801_ $$aFullTexts
000891856 980__ $$ajournal
000891856 980__ $$aVDB
000891856 980__ $$aUNRESTRICTED
000891856 980__ $$aI:(DE-Juel1)IAS-4-20090406
000891856 980__ $$aI:(DE-Juel1)IKP-3-20111104
000891856 981__ $$aI:(DE-Juel1)IAS-4-20090406