000891859 001__ 891859
000891859 005__ 20240711114057.0
000891859 0247_ $$2doi$$a10.1007/s42864-021-00079-5
000891859 0247_ $$2Handle$$a2128/27757
000891859 0247_ $$2WOS$$aWOS:000879799900009
000891859 037__ $$aFZJ-2021-01779
000891859 1001_ $$0P:(DE-HGF)0$$aBachurina, Diana$$b0$$eCorresponding author
000891859 245__ $$aSelf-passivating smart tungsten alloys for DEMO: a progress in joining and upscale for a first wall mockup
000891859 260__ $$aSingapore$$bSpringer Singapore$$c2021
000891859 3367_ $$2DRIVER$$aarticle
000891859 3367_ $$2DataCite$$aOutput Types/Journal article
000891859 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715085372_1367
000891859 3367_ $$2BibTeX$$aARTICLE
000891859 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891859 3367_ $$00$$2EndNote$$aJournal Article
000891859 520__ $$aSelf-passivating, so-called smart alloys are under development for a future fusion power plant. These alloys containing tungsten, chromium and yttrium must possess an acceptable plasma performance during a regular plasma operation of a power plant and demonstrate the suppression of non-desirable oxidation of tungsten in case of an accident. The up-scaling of the bulk smart alloys to the reactor-relevant sizes has begun and the first samples with a diameter of 50 mm and thickness of 5 mm became available. The samples feature high relative density of above 99% and good homogeneity. With production of bulk samples, the research program on joining the smart alloy to the structural material was initiated. In a present study, the novel titanium–zirconium–beryllium braze was applied successfully to join the smart alloy to the Rusfer-reduced-activation steel. The braze has survived at least a hundred of cyclic thermal excursions in the range of 300–600 °C without mechanical destruction.
000891859 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000891859 588__ $$aDataset connected to CrossRef
000891859 7001_ $$0P:(DE-Juel1)180592$$aTan, Xiaoyue$$b1$$eCorresponding author
000891859 7001_ $$0P:(DE-Juel1)166427$$aKlein, Felix$$b2
000891859 7001_ $$0P:(DE-HGF)0$$aSuchkov, Alexey$$b3
000891859 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, Andrey$$b4$$eCorresponding author
000891859 7001_ $$0P:(DE-Juel1)166256$$aSchmitz, Janina$$b5
000891859 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b6
000891859 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b7
000891859 7001_ $$0P:(DE-Juel1)2594$$aCoenen, Jan Willem$$b8
000891859 7001_ $$0P:(DE-HGF)0$$aWu, Yu-Cheng$$b9
000891859 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Christian$$b10
000891859 773__ $$0PERI:(DE-600)2970242-2$$a10.1007/s42864-021-00079-5$$gVol. 3, no. 1, p. 101 - 115$$n1$$p101–115$$tTungsten$$v3$$x2661-8028$$y2021
000891859 8564_ $$uhttps://juser.fz-juelich.de/record/891859/files/Bachurina2021_Article_Self-passivatingSmartTungstenA-1.pdf$$yOpenAccess
000891859 8767_ $$d2021-04-16$$eHybrid-OA$$jDEAL$$lDEAL: Springer
000891859 909CO $$ooai:juser.fz-juelich.de:891859$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000891859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180592$$aForschungszentrum Jülich$$b1$$kFZJ
000891859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166427$$aForschungszentrum Jülich$$b2$$kFZJ
000891859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130090$$aForschungszentrum Jülich$$b4$$kFZJ
000891859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b6$$kFZJ
000891859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b7$$kFZJ
000891859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b8$$kFZJ
000891859 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b10$$kFZJ
000891859 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000891859 9130_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000891859 9141_ $$y2021
000891859 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000891859 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000891859 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000891859 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000891859 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891859 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891859 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-23$$wger
000891859 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-23$$wger
000891859 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTUNGSTEN-SINGAPORE : 2022$$d2023-08-23
000891859 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000891859 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000891859 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-23
000891859 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000891859 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bTUNGSTEN-SINGAPORE : 2022$$d2023-08-23
000891859 920__ $$lyes
000891859 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000891859 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x1
000891859 9801_ $$aAPC
000891859 9801_ $$aFullTexts
000891859 980__ $$ajournal
000891859 980__ $$aVDB
000891859 980__ $$aI:(DE-Juel1)IEK-1-20101013
000891859 980__ $$aI:(DE-Juel1)IEK-4-20101013
000891859 980__ $$aAPC
000891859 980__ $$aUNRESTRICTED
000891859 981__ $$aI:(DE-Juel1)IFN-1-20101013
000891859 981__ $$aI:(DE-Juel1)IMD-2-20101013