001     891883
005     20210623133407.0
024 7 _ |a 10.1103/PhysRevX.11.021015
|2 doi
024 7 _ |a 2128/27637
|2 Handle
024 7 _ |a altmetric:104040429
|2 altmetric
024 7 _ |a WOS:000648487200001
|2 WOS
037 _ _ |a FZJ-2021-01796
082 _ _ |a 530
100 1 _ |a Chen, Gong
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Observation of Hydrogen-Induced Dzyaloshinskii-Moriya Interaction and Reversible Switching of Magnetic Chirality
260 _ _ |a College Park, Md.
|c 2021
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618819591_11645
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Dzyaloshinskii-Moriya interaction (DMI) has drawn much attention, as it stabilizes magnetic chirality, with important implications in fundamental and applied research. This antisymmetric exchange interaction is induced by the broken inversion symmetry at interfaces or in noncentrosymmetric lattices. Significant interfacial DMIs are often found at magnetic/heavy-metal interfaces with large spin-orbit coupling. Recent studies have shown promise for induced DMI at interfaces involving light elements such as carbon (graphene) or oxygen. Here, we report direct observation of induced DMI by chemisorption of the lightest element, hydrogen, on a ferromagnetic layer at room temperature, which is supported by density functional theory calculations. We further demonstrate a reversible chirality transition of the magnetic domain walls due to the induced DMI via hydrogen chemisorption and desorption. These results shed new light on the understanding of DMI in low atomic number materials and the design of novel chiral spintronics and magneto-ionic devices.
536 _ _ |a 521 - Quantum Materials (POF4-521)
|0 G:(DE-HGF)POF4-521
|c POF4-521
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Robertson, MacCallum
|0 0000-0001-5881-8962
|b 1
700 1 _ |a Hoffmann, Markus
|0 P:(DE-Juel1)162311
|b 2
700 1 _ |a Ophus, Colin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Fernandes Cauduro, André L.
|0 0000-0002-0537-7793
|b 4
700 1 _ |a Lo Conte, Roberto
|0 0000-0002-5050-9978
|b 5
700 1 _ |a Ding, Haifeng
|0 0000-0001-7524-0779
|b 6
700 1 _ |a Wiesendanger, Roland
|0 0000-0002-0472-4183
|b 7
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 8
700 1 _ |a Schmid, Andreas K.
|0 0000-0003-0035-3095
|b 9
700 1 _ |a Liu, Kai
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1103/PhysRevX.11.021015
|g Vol. 11, no. 2, p. 021015
|0 PERI:(DE-600)2622565-7
|n 2
|p 021015
|t Physical review / X
|v 11
|y 2021
|x 2160-3308
856 4 _ |u https://juser.fz-juelich.de/record/891883/files/PhysRevX.11.021015.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891883
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162311
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130548
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Spin-Based Phenomena
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 1
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV X : 2019
|d 2021-01-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b PHYS REV X : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-01-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21