000891901 001__ 891901
000891901 005__ 20230228121551.0
000891901 0247_ $$2doi$$a10.1088/1361-651X/abdc6b
000891901 0247_ $$2ISSN$$a0965-0393
000891901 0247_ $$2ISSN$$a1361-651X
000891901 0247_ $$2Handle$$a2128/33776
000891901 0247_ $$2WOS$$aWOS:000639931600001
000891901 037__ $$aFZJ-2021-01813
000891901 082__ $$a530
000891901 1001_ $$0P:(DE-Juel1)186711$$aSong, Hengxu$$b0$$ufzj
000891901 245__ $$aData-mining of dislocation microstructures: concepts for coarse-graining of internal energies
000891901 260__ $$aBristol$$bIOP Publ.$$c2021
000891901 3367_ $$2DRIVER$$aarticle
000891901 3367_ $$2DataCite$$aOutput Types/Journal article
000891901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674638598_21581
000891901 3367_ $$2BibTeX$$aARTICLE
000891901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891901 3367_ $$00$$2EndNote$$aJournal Article
000891901 520__ $$aContinuum models of dislocation plasticity require constitutive closure assumptions, e.g., by relating details of the dislocation microstructure to energy densities. Currently, there is no systematic way for deriving or extracting such information from reference simulations, such as discrete dislocation dynamics (DDD) or molecular dynamics. Here, a novel data-mining approach is proposed through which energy density data from systems of discrete dislocations can be extracted. Our approach relies on a systematic and controlled coarse-graining process and thereby is consistent with the length scale of interest. For data-mining, a range of different dislocation microstructures that were generated from 2D and 3D DDD simulations, are used. The analyses of the data sets result in energy density formulations as a function of various dislocation density fields. The proposed approach solves the long-standing problem of voxel-size dependent energy calculation during coarse graining of dislocation microstructures. Thus, it is crucial for any continuum dislocation dynamics simulation.
000891901 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000891901 536__ $$0G:(EU-Grant)759419$$aMuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)$$c759419$$fERC-2017-STG$$x1
000891901 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000891901 7001_ $$00000-0002-2909-5109$$aGunkelmann, Nina$$b1
000891901 7001_ $$0P:(DE-HGF)0$$aPo, Giacomo$$b2
000891901 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b3$$eCorresponding author
000891901 773__ $$0PERI:(DE-600)2001737-6$$a10.1088/1361-651X/abdc6b$$gVol. 29, no. 3, p. 035005 -$$n3$$p035005 -$$tModelling and simulation in materials science and engineering$$v29$$x1361-651X$$y2021
000891901 8564_ $$uhttps://juser.fz-juelich.de/record/891901/files/Song_2021_Modelling_Simul._Mater._Sci._Eng._29_035005.pdf$$yOpenAccess
000891901 8767_ $$d2021-12-30$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP
000891901 909CO $$ooai:juser.fz-juelich.de:891901$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000891901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186711$$aForschungszentrum Jülich$$b0$$kFZJ
000891901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b3$$kFZJ
000891901 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000891901 9141_ $$y2022
000891901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000891901 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000891901 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMODEL SIMUL MATER SC : 2019$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000891901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000891901 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000891901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000891901 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
000891901 980__ $$ajournal
000891901 980__ $$aVDB
000891901 980__ $$aUNRESTRICTED
000891901 980__ $$aI:(DE-Juel1)IAS-9-20201008
000891901 980__ $$aAPC
000891901 9801_ $$aAPC
000891901 9801_ $$aFullTexts