001     891901
005     20230228121551.0
024 7 _ |a 10.1088/1361-651X/abdc6b
|2 doi
024 7 _ |a 0965-0393
|2 ISSN
024 7 _ |a 1361-651X
|2 ISSN
024 7 _ |a 2128/33776
|2 Handle
024 7 _ |a WOS:000639931600001
|2 WOS
037 _ _ |a FZJ-2021-01813
082 _ _ |a 530
100 1 _ |a Song, Hengxu
|0 P:(DE-Juel1)186711
|b 0
|u fzj
245 _ _ |a Data-mining of dislocation microstructures: concepts for coarse-graining of internal energies
260 _ _ |a Bristol
|c 2021
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674638598_21581
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Continuum models of dislocation plasticity require constitutive closure assumptions, e.g., by relating details of the dislocation microstructure to energy densities. Currently, there is no systematic way for deriving or extracting such information from reference simulations, such as discrete dislocation dynamics (DDD) or molecular dynamics. Here, a novel data-mining approach is proposed through which energy density data from systems of discrete dislocations can be extracted. Our approach relies on a systematic and controlled coarse-graining process and thereby is consistent with the length scale of interest. For data-mining, a range of different dislocation microstructures that were generated from 2D and 3D DDD simulations, are used. The analyses of the data sets result in energy density formulations as a function of various dislocation density fields. The proposed approach solves the long-standing problem of voxel-size dependent energy calculation during coarse graining of dislocation microstructures. Thus, it is crucial for any continuum dislocation dynamics simulation.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a MuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419)
|0 G:(EU-Grant)759419
|c 759419
|f ERC-2017-STG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gunkelmann, Nina
|0 0000-0002-2909-5109
|b 1
700 1 _ |a Po, Giacomo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 3
|e Corresponding author
773 _ _ |a 10.1088/1361-651X/abdc6b
|g Vol. 29, no. 3, p. 035005 -
|0 PERI:(DE-600)2001737-6
|n 3
|p 035005 -
|t Modelling and simulation in materials science and engineering
|v 29
|y 2021
|x 1361-651X
856 4 _ |u https://juser.fz-juelich.de/record/891901/files/Song_2021_Modelling_Simul._Mater._Sci._Eng._29_035005.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891901
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MODEL SIMUL MATER SC : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21