Home > Publications database > Data-mining of dislocation microstructures: concepts for coarse-graining of internal energies > print |
001 | 891901 | ||
005 | 20230228121551.0 | ||
024 | 7 | _ | |a 10.1088/1361-651X/abdc6b |2 doi |
024 | 7 | _ | |a 0965-0393 |2 ISSN |
024 | 7 | _ | |a 1361-651X |2 ISSN |
024 | 7 | _ | |a 2128/33776 |2 Handle |
024 | 7 | _ | |a WOS:000639931600001 |2 WOS |
037 | _ | _ | |a FZJ-2021-01813 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Song, Hengxu |0 P:(DE-Juel1)186711 |b 0 |u fzj |
245 | _ | _ | |a Data-mining of dislocation microstructures: concepts for coarse-graining of internal energies |
260 | _ | _ | |a Bristol |c 2021 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674638598_21581 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Continuum models of dislocation plasticity require constitutive closure assumptions, e.g., by relating details of the dislocation microstructure to energy densities. Currently, there is no systematic way for deriving or extracting such information from reference simulations, such as discrete dislocation dynamics (DDD) or molecular dynamics. Here, a novel data-mining approach is proposed through which energy density data from systems of discrete dislocations can be extracted. Our approach relies on a systematic and controlled coarse-graining process and thereby is consistent with the length scale of interest. For data-mining, a range of different dislocation microstructures that were generated from 2D and 3D DDD simulations, are used. The analyses of the data sets result in energy density formulations as a function of various dislocation density fields. The proposed approach solves the long-standing problem of voxel-size dependent energy calculation during coarse graining of dislocation microstructures. Thus, it is crucial for any continuum dislocation dynamics simulation. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a MuDiLingo - A Multiscale Dislocation Language for Data-Driven Materials Science (759419) |0 G:(EU-Grant)759419 |c 759419 |f ERC-2017-STG |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Gunkelmann, Nina |0 0000-0002-2909-5109 |b 1 |
700 | 1 | _ | |a Po, Giacomo |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Sandfeld, Stefan |0 P:(DE-Juel1)186075 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1088/1361-651X/abdc6b |g Vol. 29, no. 3, p. 035005 - |0 PERI:(DE-600)2001737-6 |n 3 |p 035005 - |t Modelling and simulation in materials science and engineering |v 29 |y 2021 |x 1361-651X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/891901/files/Song_2021_Modelling_Simul._Mater._Sci._Eng._29_035005.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:891901 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186711 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)186075 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MODEL SIMUL MATER SC : 2019 |d 2021-01-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-28 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-28 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2021-01-28 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-28 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-28 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-28 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-9-20201008 |k IAS-9 |l Materials Data Science and Informatics |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-9-20201008 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|