001     891906
005     20250129092502.0
024 7 _ |a 10.1093/gji/ggaa594
|2 doi
024 7 _ |a WOS:000646864000014
|2 WOS
037 _ _ |a FZJ-2021-01818
082 _ _ |a 550
100 1 _ |a Wang, Haoran
|0 P:(DE-Juel1)180342
|b 0
|e Corresponding author
245 _ _ |a Experimental design to reduce inductive coupling in spectral electrical impedance tomography (sEIT) measurements
260 _ _ |a Oxford
|c 2021
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1618920047_19615
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spectral electrical impedance tomography (sEIT) is a promising method to image the subsurface complex resistivity distribution in a broad frequency range (i.e. mHz to kHz). However, inductive coupling between cables is known to affect measurement accuracy for frequencies above 50 Hz. Previous studies have proposed correction methods, but these have not been widely adopted yet. In this study, we evaluated the influence of inductive coupling on the measured complex impedance for different electrode and cable configurations. We propose a novel index to evaluate the inductive coupling strength and use it to develop a filter that selects data with limited inductive coupling. In a first step, the inductive coupling strength of a fan-shaped and parallel cable layout were evaluated. It was found that the fan-shaped layout provided more measurements with low inductive coupling strength. Using a synthetic modelling study with a fan-shaped cable layout, we then showed that it is possible to achieve good inversion results without data correction if measurements with high inductive coupling strength are filtered out before inversion. In a final step, we use the novel filtering approach based on inductive coupling strength with actual surface sEIT measurements. The EIT inversion results based on the filtered data corresponded well with inversion results using data corrected for inductive coupling and also showed good spectral consistency. It was concluded that it is possible to achieve reliable inversion results without data correction for inductive coupling when a fan-shaped layout and configurations with sufficiently low inductive coupling strength are used.
536 _ _ |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)
|0 G:(DE-HGF)POF4-217
|c POF4-217
|x 0
|f POF IV
700 1 _ |a Huisman, Johan Alexander
|0 P:(DE-Juel1)129472
|b 1
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
773 _ _ |a 10.1093/gji/ggaa594
|0 PERI:(DE-600)2006420-2
|n 1
|p 222-235
|t Geophysical journal international
|v 225
|y 2021
|x 0016-8009
856 4 _ |u https://juser.fz-juelich.de/record/891906/files/Manuscript_ICS_clean.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:891906
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180342
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYS J INT : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21