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Abstract  1 

Horizontal borehole ground penetrating radar (GPR) measurements can provide 2 

valuable information on soil water content (SWC) dynamics in the vadose zone, and 3 

hence show potential to estimate soil hydraulic properties. In this study, the 4 

performance of both sequential and coupled inversion workflows to obtain soil 5 

hydraulic properties from time-lapse horizontal borehole GPR data obtained during an 6 

infiltration experiment were compared using a synthetic modelling study and the 7 

analysis of actual field data. The sequential inversion using the vadose zone flow model 8 

HYDRUS-1D directly relied on SWC profiles determined from the travel time of GPR 9 

direct waves using the straight-wave approximation. The synthetic modelling study 10 

showed that sequential inversion did not provide accurate estimates of the soil hydraulic 11 

parameters due to interpretation errors in the estimated SWC near the infiltration front 12 

and the ground surface. In contrast, the coupled inversion approach, which combined 13 

HYDRUS-1D with a forward model of GPR wave propagation (gprMax3D) and GPR 14 

travel time information, provided accurate estimates of the hydraulic properties in the 15 

synthetic modelling study. The application of the coupled inversion approach to 16 

measured borehole GPR data also resulted in plausible estimates of the soil hydraulic 17 

parameters. It was concluded that coupled inversion should be preferred over sequential 18 

inversion of time-lapse horizontal borehole GPR data in the presence of strong SWC 19 

gradients that occur during infiltration events. 20 

 21 

Key Words: Ground penetrating radar, hydrogeophysics, coupled inversion. 22 
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 Sequential inversion of ground penetrating radar data cannot provide accurate 1 

hydraulic parameter estimates if strong vertical gradients in soil water content are 2 

present due to infiltration. 3 

 Coupled inversion of ground penetrating radar data is able to provide accurate 4 

estimates of the hydraulic parameters. 5 

 Hydraulic parameters estimated using coupled inversion of experimental ground 6 

penetrating radar data were consistent with water retention and relative hydraulic 7 

conductivity functions from independent time domain reflectometry measurements. 8 

*Highlights (3 to 5 bullet points (maximum 85 characters
including spaces per bullet point)
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1. Introduction 15 

Obtaining accurate hydraulic parameters of the vadose zone is important in a wide range 16 

of applications, including modelling of water flow and contaminant transport (e.g., 17 

Wagner, 1992; Vereecken; et al., 2007), managing water and soil resources (e.g., 18 

Blanco-Canqui and Lai, 2007; Hartmann et al., 2014), and evaluating climate change 19 

effects on forests (e.g., Martı́nez-Vilalta et al., 2002; McDowell and Allen, 2015). 20 

Hydraulic parameters can be determined by different laboratory methods (e.g., Neuzil et 21 

al., 1981), but this typically leads to hydraulic property estimates that are not 22 

representative of field conditions (Kool et al., 1987). Therefore, estimation of hydraulic 23 

properties at the field scale is preferred if characterization at this scale is intended (Klute 24 

and Dirksen, 1986).  25 

 26 

Field-scale estimation of hydraulic properties is commonly based on measurements 27 

made with point-scale sensors, such as the neutron probe (Chanasyk and Naeth, 1996) 28 

and time domain reflectometry (TDR) (Robinson et al., 2008). Such methods allow the 29 

accurate determination of soil water content (SWC) dynamics, and therefore have been 30 

widely used for parameterizing hydrological models (e.g., Abbaspour et al., 2000; Katul 31 

et al., 1993; Kumar et al., 2010; Malicki et al., 1992; Nandagiri and Prasad, 1996; 32 

Steenpass et al., 2010; Wollschläger et al., 2009). In some studies, SWC measurements 33 

were combined with matric potential measurements obtained by tensiometers (e.g., 34 

Zhang et al., 2003) in order to better constrain the hydraulic parameter estimation 35 

(Vereecken et al., 2008). A major disadvantage of using point sensor information to 36 

estimate soil hydraulic properties is the relatively small sensing volume and the 37 

resulting limited representativeness for the field-scale soil states. 38 
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 39 

In the last decades, many studies reported the potential of using geophysical techniques, 40 

such as electromagnetic induction (EMI) (e.g., Brosten et al., 2011; Moghadas et al., 41 

2017), electrical resistivity tomography (ERT) (e.g., Brunet et al., 2010; Huisman et al., 42 

2010; Manoli et al., 2015; Mboh et al., 2012; Pollock and Cirpka, 2010) and ground 43 

penetrating radar (GPR) (e.g., Hubbard and Rubin, 2000; Looms et al., 2008a; Rossi et 44 

al., 2015), to obtain accurate field-scale estimates of SWC and soil hydraulic properties. 45 

GPR uses the travel time and attenuation of high-frequency electromagnetic waves 46 

travelling through the ground to obtain the dielectric permittivity (ε) and electric 47 

conductivity (σ) of the subsurface (e.g., Holliger et al., 2001; Slob et al., 2010). Due to 48 

the direct relationship between ε and SWC (Topp et al., 1980), GPR is the one of the 49 

most promising geophysical methods for SWC estimation (e.g., Huisman et al., 2003; 50 

Klotzsche et al., 2018). GPR can rapidly provide surveys for larger scales of interest (1 51 

~ 1000 m profiles) (e.g., Mahmoudzadeh Ardekani, 2013), which implies that GPR is 52 

capable of characterizing the spatio-temporal SWC distribution at the field scale (e.g., 53 

Steelman et al., 2012).  54 

 55 

In general, GPR measurements can be performed off the ground surface (off-ground 56 

GPR) (e.g., Lambot et al., 2004), on the soil surface (surface GPR) (e.g., van 57 

Overmeeren et al., 1997; Huisman et al., 2002) or in vertical or horizontal boreholes 58 

(borehole GPR) (e.g., Redman et al., 2000). Off-ground GPR relies on the use of an 59 

ultra-wide frequency band for subsurface investigations, and hence can potentially 60 

provide high-resolution information about the soil states. However, off-ground GPR 61 

measurements are influenced by surface roughness and only have a limited penetration 62 
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depth (Lambot et al., 2006a).  For surface GPR measurements, SWC can be estimated 63 

based on the analysis of the direct ground wave (Grote et al., 2003; Weihermüller et al., 64 

2007) or reflected waves (Lunt et al., 2005). Both GPR acquisition strategies have been 65 

successfully used to monitor water flow dynamics in unsaturated soil (Mangel et al., 66 

2012; Moysey, 2010; Allroggen et al., 2015). The penetration depth of surface GPR is 67 

limited by the soil characteristics, especially by the bulk electric conductivity. 68 

Furthermore, there is no control on the vertical resolution when using reflected waves 69 

for SWC determination (Huisman et al., 2003). Borehole GPR can overcome these 70 

limitations but requires the availability and accessibility of appropriate boreholes or 71 

wells, and is therefore restricted to specialized test sites and experimental set-ups. 72 

Borehole GPR measurements have also been used to monitor SWC dynamics (Looms et 73 

al., 2008b). In addition, Zero-Offset-Profiling (ZOP) measurements between horizontal 74 

boreholes have been used to monitor SWC dynamics (Galagedara et al., 2002, Cai et al., 75 

2016; Klotzsche et al., 2019a). Due to the good control on the vertical resolution and the 76 

improved spatial representativeness for the field plot scale, this kind of set-up provides 77 

detailed information on the spatial and temporal variation of SWC. 78 

 79 

In order to derive soil hydraulic parameters from time-lapse GPR data, two types of 80 

inversion strategy can be used. The first type is commonly called sequential inversion 81 

and consists of three steps (Huisman et al., 2010; Hinnell et al., 2010). First, the 82 

dielectric permittivity is determined from the first arrival time of a GPR measurement 83 

using a straight-ray approximation (e.g., Galagedara et al., 2002) or a full-waveform 84 

inversion (e.g., Klotzsche et al., 2019b). Second, a petrophysical relationship is used to 85 

convert to SWC using the empirical Topp’s equation (Topp et al., 1980) or a more 86 
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advanced dielectric mixing model (Roth et al., 1990). Third, the obtained time-lapse 87 

SWC data are used in combination with a hydrological model to estimate soil hydraulic 88 

parameters using inverse modelling. However, the use of a sequential inversion strategy 89 

may cause errors in the estimated soil hydraulic parameters when errors due to 90 

simplified geophysical data interpretations propagate into the estimated soil hydraulic 91 

parameters. An example of a potential source for such errors is the use of the straight-92 

wave approximation for the travel path of the electromagnetic waves (Rucker and Ferré, 93 

2004a). To overcome this problem, a coupled inversion strategy can be used (Hinnel et 94 

al., 2010; Lambot et al., 2006b). In contrast to sequential inversion, a coupled inversion 95 

links a hydrological model directly with a forward model of the geophysical data, and 96 

the mismatch between measured and modelled geophysical response is minimized (i.e. 97 

first arrival time or even the full waveform in the case of GPR). In doing so, the soil 98 

hydraulic parameters used in the hydrological model can be optimized, while error 99 

propagation is avoided. The coupled inversion approach relies heavily on an accurate 100 

forward hydrological model. A wrong conceptualization of the subsurface in terms of 101 

layering or processes not adequately captured by the hydrological model (e.g., dual 102 

porosity or macropore flow) will introduce errors that propagate into the estimated 103 

parameters. 104 

 105 

A range of studies have employed off-ground GPR, surface GPR, and vertical borehole 106 

GPR measurements for estimating soil hydraulic properties from time-lapse SWC 107 

information by using either a sequential or a coupled inversion approach (e.g., Busch et 108 

al., 2013; Chen et al., 2001; Chen et al., 2004; Jadoon et al., 2012; Jaumann and Roth, 109 

2018; Jonard et al., 2015; Kowalsky et al., 2005; Lambot et al., 2009; Rucker and Ferré, 110 



 

Page 6 of 41 

 

2004b). Compared to these GPR acquisition strategies, horizontal borehole GPR 111 

measurements have several advantages to reveal the temporal and spatial SWC 112 

variations at the field plot scale. Firstly, horizontal borehole GPR measurements can 113 

provide SWC information at specific depths and thus have larger penetration depth and 114 

better control on vertical resolution compared to off-ground and surface GPR. Secondly, 115 

horizontal borehole GPR measurements provide a higher lateral spatial 116 

representativeness of the field plot compared to vertical borehole GPR measurements. 117 

However, no studies have been conducted yet that use horizontal borehole GPR 118 

measurements to parameterize a hydrological model. In this study, the performance of 119 

both sequential and coupled inversion workflows to obtain soil hydraulic properties 120 

from time-lapse horizontal borehole GPR data obtained during an infiltration event will 121 

be compared. To systematically study the differences between the two inversion 122 

approaches, a synthetic modelling experiment will be presented first. In a second step, 123 

actual horizontal borehole GPR measurements will be inverted using a coupled 124 

inversion approach. The resulting estimates of the hydraulic parameters will be 125 

compared to available independent hydraulic property estimates obtained from TDR 126 

measurements. 127 

 128 

2. Material and methods  129 

2.1 Test site and GPR data acquisition 130 

An infiltration experiment was carried out on a bare soil plot at a rhizotron facility in 131 

Selhausen, Germany. In this facility, three plots (7 x 3 m) were established with 132 

different treatments (natural rain, rain-sheltered, and irrigated). GPR access tubes of 7 m 133 

length were horizontally installed at 0.1, 0.2, 0.4, 0.6, 0.8, and 1.2 m depth across the 134 
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entire length of the plot. The soil in the facility originates from fluvial gravel deposits 135 

from the Rur river system and is characterized as an Orthic Luvisol with high stone 136 

content (>50%) and a loamy texture (Table 1). Due to tillage activity, soil porosity 𝛷 137 

changes from 0.33 cm3 cm-3 near the surface to approximately 0.25 cm3 cm-3 below 0.3 138 

m depth. In order to install the GPR access tubes, the entire plot was dug out and 139 

refilled layer-wise. Therefore, no pedogenetic horizons are detectable anymore below 140 

the plough horizon. No clear pedogenetic layers are detectable in the gravely layers of 141 

the natural soil either. For more information about the rhizotron facility, the reader is 142 

referred to Cai et al. (2016) and Klotzsche et al. (2019a). 143 

 144 

The infiltration experiment consisted of five infiltration events that were carried out at 145 

the rain-sheltered plot during a 4-day period (Kelter et al., 2018). The experimental set-146 

up, GPR data acquisition, and GPR data analysis were reported in Yu et al. (2020) in 147 

detail. Therefore, only a short summary is provided here. Water was infiltrated using a 148 

drip irrigation system that was supplied by water from an underground tank at a 149 

constant rate (0.03 cm min-1). Approximately 2.7 cm of water was applied for each 150 

infiltration event of 90 min (Fig. 1a). ZOP surveys were made using a GPR system 151 

(PulseEKKO, Sensors & Software, Canada) with 200 MHz borehole antenna. GPR 152 

measurements were made at six depths (0.1, 0.2, 0.4, 0.6, 0.8 and 1.2 m) before and 153 

after infiltration events. During the infiltration events, GPR measurements were 154 

restricted to the boreholes at 0.1, 0.2 and 0.4 m depth as the SWC was expected to 155 

increase mainly at shallow depths at the beginning of each infiltration event. For each 156 

ZOP survey, the transmitter and receiver were first pushed to the end of the borehole (7 157 

m) and then pulled simultaneously throughout the boreholes in 0.05 m steps. The survey 158 
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ended at 1.5 m distance from the access trench to avoid that reflections from the trench 159 

wall and installed sensors interfered with the direct waves. 160 

 161 

The development of the mean GPR travel time at different depths is shown in Fig. 1b. 162 

To determine the GPR travel time from the ZOP data, the time-zero offset (𝑇0) and first 163 

arrival time ( 𝑡𝑜𝑏𝑠) of the direct wave were determined using the strategy proposed by 164 

Klotzsche et al. (2019a). In this strategy, 𝑇0 was determined from wide angle reflection 165 

and refraction (WARR) measurements with the borehole antennae in air and 𝑡𝑜𝑏𝑠 was 166 

manually picked for each trace. GPR travel times measured at 0.1 and 0.2 m depth 167 

increased after the first infiltration event. In response to the second infiltration event, 168 

travel times up to a depth of 0.8 m responded to the infiltration. After the third 169 

infiltration event, the travel times increased at all depths. The standard deviation of the 170 

travel times is also shown in in Fig. 1b, which illustrates the spatial variability along the 171 

5.5 m borehole tubes that were generated by the expected differences in the irrigation 172 

rate of the used dripping system and small-scale lateral water content variations caused 173 

by the heterogeneity of the soil. Based on the straight-ray approximation and 174 

independent of SWC, the observed ± 0.5 ns for the standard deviation of the travel time 175 

would lead to an uncertainty of ± 0.025 cm3cm-3 for SWC.  176 

 177 

Based on the known distance between the horizontal boreholes (𝑑 = 0.75 m), a 1D 178 

dielectric permittivity profile (𝜀𝑜𝑏𝑠) can be calculated from the measured GPR travel 179 

times using: 180 

   𝜀𝑜𝑏𝑠 = [ 
𝑐∗(𝑡𝑜𝑏𝑠−𝑇0)

𝑑
]2                                                   (1) 181 

where c is the speed of light in vacuum (0.3 m ns-1). SWC (𝜃𝑜𝑏𝑠) was calculated from 182 
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𝜀𝑜𝑏𝑠 using the complex refractive index model (CRIM) (Roth et al., 1990): 183 

𝜃𝑜𝑏𝑠 =
√𝜀𝑜𝑏𝑠−(1−𝛷)√𝜀𝑠−𝛷

√𝜀𝑤−1
                                                (2) 184 

where 𝜀𝑤 is the permittivity of water (84 at 10°C), 𝛷 is the porosity of the respective 185 

layer, and 𝜀𝑠 is the permittivity of the solid soil fraction, which was assumed to be 4.7 186 

for this facility, as considered by Klotzsche et al. (2019a). This value was also 187 

suggested by Robinson et al. (2005) for soil with high quartz content, as is the case for 188 

this facility. 189 

 190 

2.2 Hydrological modelling 191 

Vertical SWC dynamics during the infiltration experiment were simulated using 192 

HYDRUS-1D (Šimůnek et al., 2008), which calculates one-dimensional variably-193 

saturated water flow by solving the Richards equation:  194 

𝜕𝜃

𝜕𝑡
=  

𝜕

𝜕𝑧
[𝐾(ℎ) (

𝜕ℎ

𝜕𝑧
+ 1)]                                             (3) 195 

where ℎ is the pressure head (cm), 𝜃 is the volumetric water content (cm3 cm-3), 𝑡 is 196 

time (min), 𝑧  refers to the positive upward spatial coordinate (cm), and 𝐾  is the 197 

hydraulic conductivity (cm min-1) as a function of ℎ . 𝜃(ℎ)  is the water retention 198 

function described by the van Genuchten model (van Genuchten, 1980): 199 

𝜃(ℎ) =  {
𝜃𝑟 +

𝜃𝑠−𝜃𝑟

(1+|𝛼ℎ|𝑛)𝑚     , ℎ < 0

     𝜃𝑠                          , ℎ ≥ 0
                                             (4) 200 

where 𝜃𝑟 is the residual water content (cm3 cm-3), 𝜃𝑠  is the saturated water content (cm3 201 

cm-3), 𝛼 (cm-1) is the inverse of the air-entry value, 𝑛 is the pore-size distribution index 202 

(-) and 𝑚  is related to 𝑛  by  𝑚 = 1 − 1/𝑛  . The unsaturated hydraulic conductivity 203 

𝐾𝑟(ℎ) is given by: 204 
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𝐾𝑟(ℎ) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1/𝑚
)𝑚]2                                         (5) 205 

𝑆𝑒 =  
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
                                                               (6) 206 

where 𝐾𝑠  (cm min-1) is the saturated hydraulic conductivity, 𝑆𝑒  (-) is the effective 207 

saturation governed by Eq. 6 and 𝑙 (-) is the tortuosity, which is generally set to 0.5 but 208 

can also be estimated for individual soils (e.g., Schaap and Leij, 2000). Using this 209 

Mualem – van Genuchten parameterization (Mualem, 1976; van Genuchten, 1980), the 210 

soil hydraulic properties are described by five parameters (i.e. 𝐾𝑠, 𝜃𝑠, 𝜃𝑟, 𝛼, and 𝑛). 211 

 212 

For the simulation of vertical SWC dynamics, the model domain was set to be 150 cm 213 

deep and was discretized with 151 nodes with an equal spacing of 1 cm. Simulations 214 

were initialized using linearly interpolated SWC estimates from measured permittivity 215 

obtained from borehole GPR data acquired prior to the first infiltration event. 216 

Evaporation and root water uptake were both neglected in the simulation, as evaporation 217 

was low with respect to the amount of infiltrated water and the soil was bare. An 218 

atmospheric boundary condition with surface run-off was used to represent the 219 

irrigation events at the upper boundary of the domain. At the lower boundary of the 220 

domain, a seepage face (ℎ = 0) was used. The use of a seepage face was required to 221 

match SWC observations and avoid excessive drainage out of the profile, which 222 

occurred when a free drainage boundary condition was used. A physical explanation for 223 

the need to use a seepage face may be the presence of a compacted soil layer directly 224 

below the rhizotron facility caused by the construction of the facility. As an alternative 225 

to the use of a seepage face, a longer soil profile with a dense layer with low 𝐾𝑠 could 226 

have been used. However, this would have made the hydrological simulations 227 

computationally more demanding, especially in the case of the coupled inversion. 228 
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 229 

2.3 GPR modeling 230 

The gprMax3D model was used to simulate GPR wave propagation with a Finite-231 

Difference Time-Domain (FDTD) numerical method (Giannopoulos, 2005; Warren et 232 

al., 2016). The size of the simulation domain for the gprMax3D simulation was set to 2 233 

x 1.1 x 2.2 m, including a soil of 1.5 m thickness below an air layer of 0.7 m. The 3D 234 

domain was discretized with nodes with 0.02 m spacing and perfectly matched layers 235 

(PML) were used at the boundaries of the model domain (Berenger, 1994). The center 236 

frequency of the antenna was set to 200 MHz (i.e. the center frequency of the antenna) 237 

and the first derivative of a Gaussian waveform was selected as the excitation function 238 

for the current source. As we only considered the velocity information for the GPR data 239 

interpretation, the electric conductivity of the soil was assumed to be zero. 240 

 241 

2.4 Set-up for sequential and coupled inversion 242 

To estimate hydraulic parameters from horizontal borehole GPR measurements, both 243 

sequential and coupled inversion strategies were used. The general set-ups of the two 244 

inversion strategies are illustrated in Fig. 2a and Fig. 2b. A key difference between the 245 

two approaches is that the sequential inversion approach directly optimizes the misfit 246 

between the SWC obtained from the GPR measurements (𝜃𝑜𝑏𝑠) and the simulated SWC 247 

(𝜃𝑚𝑜𝑑) provided by HYDRUS-1D, whereas the coupled inversion optimizes the misfit 248 

between the travel time of the measured GPR data (𝑡𝑜𝑏𝑠) and the simulated travel time 249 

( 𝑡𝑚𝑜𝑑 ) obtained with gprMax3D using SWC information ( 𝜃𝑚𝑜𝑑 ) provided by 250 

HYDRUS-1D. The misfits for the sequential and coupled inversions were described 251 

using cost functions based on the root-mean-square error (RMSE) between observed 252 
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and simulated data: 253 

  𝐶𝑀𝑉𝐺(𝜃) = √
∑ (𝜃𝑖

𝑚𝑜𝑑−𝜃𝑖
𝑜𝑏𝑠)2𝑛

𝑖=1

𝑛
                                              (7) 254 

𝐶𝑀𝑉𝐺(𝑡) = √
∑ (𝑡𝑖

𝑚𝑜𝑑−𝑡𝑖
𝑜𝑏𝑠)2𝑛

𝑖=1

𝑛
                                               (8) 255 

where 𝑛 is the number of GPR measurements.  256 

 257 

In order to minimize these cost functions, the Shuffled Complex Evolution (SCE-UA) 258 

algorithm introduced by Duan et al. (1993) was used. SCE-UA is a global optimization 259 

algorithm that not only has been widely used in hydrological research (e.g., Chu et al., 260 

2010; Thyer and Kuczera, 1999) but also in geophysical applications (e.g., Liu et al., 261 

2018; Mangel et al., 2017). The SCE-UA algorithm requires the specification of 262 

parameter bounds for each parameter considered in the optimization. The optimization 263 

includes several steps. First, different sets of hydraulic parameters are randomly created 264 

in the feasible parameter space and the cost function value for each of these parameter 265 

sets is calculated. Second, the parameter sets are sorted in order of their cost function 266 

value and distributed into several complexes that are subsequently evolved using the 267 

competitive complex evolution (CCE) algorithm (Duan et al., 1994). After this first loop 268 

of evolution, the complexes are merged again into a single population, which again is 269 

sorted in order of increasing cost function value and divided into complexes for the next 270 

optimization loop. The algorithm is considered to be converged if the cost function 271 

valued reaches a specified value (i.e. the known error of the data) or if the improvement 272 

in the best model is below 0.01% in the last 10 evolution loops. 273 

 274 

Since no GPR measurements were made in dry soil conditions, the inversion is not 275 



 

Page 13 of 41 

 

expected to be sensitive to 𝜃𝑟 . In order to build an independent hydrological model 276 

based on GPR measurement, 𝜃𝑟 was fixed it to 0 for the inversion and only 𝐾𝑠, 𝜃𝑠, 𝛼, 277 

and 𝑛  were estimated. 𝐾𝑠  was inverted by using its log-transform (log( 𝐾𝑠 )). The 278 

algorithms for both sequential and coupled inversion were coded in GNU Octave (Eaton, 279 

2012).  280 

2.5 Set-up for synthetic infiltration experiments 281 

2.5.1 Set-up for a 1-layer soil profile 282 

Synthetic model experiments were performed to gain further insight into the feasibility 283 

of obtaining plausible parameter estimates from sequential and coupled inversion of 284 

time-lapse borehole GPR data. In a first model experiment, a 1-layer soil profile was 285 

considered. We used the soil hydraulic parameters for the top soil (0 - 30 cm) 286 

determined by Cai et al. (2017), which were estimated from TDR measurements at the 287 

same depths as the GPR access tubes (Table 2). In order to generate synthetic data for 288 

the model experiments, five infiltration events were simulated with an infiltration rate of 289 

0.03 cm min-1, which corresponds with the infiltration rate used in the actual field 290 

experiment. Since the 1-layer soil profile was constructed using the hydraulic 291 

parameters of the topsoil (higher 𝜃𝑠), the amount of applied water was increased in the 292 

synthetic modelling experiment. In particular, the first three irrigation events now lasted 293 

400 min whereas the last two infiltration events still lasted 90 min. After obtaining the 294 

SWC profile (𝜃𝑚𝑜𝑑) from HYDRUS-1D, a dielectric permittivity profile (𝜀𝑚𝑜𝑑) was 295 

calculated using the rearranged form of the CRIM model given in Eq. 2:  296 

  𝜀𝑚𝑜𝑑 = [(√𝜀𝑤 − 1) ∗ 𝜃𝑚𝑜𝑑 + (1 − 𝛷) ∗ √𝜀𝑠 + 𝛷]2                             (9) 297 

This dielectric permittivity profile was then used to simulate GPR measurements for the 298 
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six depths using gprMax3D.  299 

 300 

2.5.2 Set-up for a 2-layer soil profile 301 

A synthetic modelling experiment with a 2-layer soil profile was also performed. 302 

Sequential and coupled inversions for the 2-layer soil profile were conducted based on 303 

the infiltration schedule of the actual experiment (Fig. 1a). The hydraulic parameters in 304 

this second experiment were also based on Cai et al. (2017). However, the saturated 305 

hydraulic conductivity of the subsoil (𝐾𝑠2) was changed from 0.0004 cm min-1 reported 306 

by Cai et al. (2017) to 0.04 cm min-1, because it had to be larger than the infiltration rate 307 

of 0.03 cm min-1 to avoid ponding of water at the layer interface. For a more realistic 308 

synthetic modelling study, Gaussian noise with zero mean and a standard deviation of 309 

0.1 ns and 0.01 cm3 cm-3 was added to the synthetic travel times and SWC data, 310 

respectively, for both the 1-layer and the 2-layer model. 311 

2.5.3 Automatic picking of the first arrival time  312 

The implementation of the coupled inversion approach requires an automatic picking of 313 

the first arrival time. For the simulated GPR data, the first arrival time can be 314 

automatically determined using an amplitude threshold. To obtain this threshold, the 315 

excitation moment (𝑇𝑠) of the simulated data was determined from the onset of the 316 

source wavelet. The source wavelet is defined as the first derivative of the Gaussian 317 

waveform: 318 

𝐼 =  −2ζ√𝑒
1

2ζ𝑒−ζ(𝑡−𝜒)2
(𝑡 − 𝜒)                                          (10) 319 

where ζ = 2𝜋2𝑓2 and 𝜒 = 1/𝑓, 𝐼 is the electric current density (A m-2), 𝑒 is the natural 320 
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logarithm, and 𝑓 is the center frequency of the antenna (200 MHz). From this source 321 

wavelet, a 𝑇𝑠 of 1.62 ns was manually determined (Fig. 3a). Subsequently, an air wave 322 

was simulated using antennas positioned at 0.1 m above the ground surface (Fig. 3b). 323 

With the known propagation velocity in air (0.3 m ns-1) and the antenna separation (0.75 324 

m), the true travel time of the air wave is 2.5 ns. The appropriate amplitude threshold 325 

(0.0158 V m-1) was then determined from the amplitude of the simulated air wave at the 326 

travel time of 4.12 ns, which is the sum of 𝑇𝑠 (1.62 ns) and true travel time of the air 327 

wave (2.5 ns).  328 

 329 

To verify the robustness of the automatic first arrival time determination, a synthetic 330 

infiltration-induced SWC profile was generated by HYDRUS-1D (Fig. 3c) and ZOP 331 

measurements were simulated using gprMax3D at different depths. The amplitude 332 

threshold of 0.0158 V m-1 was used to determine the first arrival time (Fig. 3d). It was 333 

found that the amplitude of the traces rapidly increased after the determined first arrival 334 

time, which confirms the robustness of automatic procedure for the determination of the 335 

first arrival time.  336 

 337 

2.6 Uncertainty Analysis 338 

Proper quantification of uncertainty in the estimated soil hydraulic parameters is of 339 

great importance given that the information content of soil water content measurements 340 

for the estimation of soil hydraulic properties depends on the initial and boundary 341 

conditions during the experiment (Mboh et al., 2011). In this study, we used both 342 

response surface analysis (Toorman et al., 1992) and a simple first-order approximation 343 

(Kool and Parker, 1988; Kuczera and Mroczkowski, 1998; Vrugt and Dane, 2006) to 344 
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investigate the uncertainty of the inverted hydraulic parameters.  345 

 346 

Response surfaces provide a 2D view of the cost function distribution obtained with a 347 

grid search. In order to obtain such surfaces, two hydraulic parameters (e.g., 𝛼 and 𝑛) 348 

are varied between defined bounds, whereas the other hydraulic parameters (e.g., log(𝐾𝑠) 349 

and 𝜃𝑠 ) are fixed at their true (or optimized) value. Response surfaces are a robust 350 

method to visualize parameter uncertainty and the minimum of the cost function. 351 

However, they commonly require a high computational effort, especially in the case of 352 

many model parameters (i.e. the 2-layer model). Therefore, this method was only used 353 

for the synthetic model study with a 1-layer soil profile.  354 

 355 

A classic first-order approximation of parameter uncertainty was also used (Vrugt and 356 

Dane, 2006). It is based on the covariance matrix (𝐶 ) of the optimized hydraulic 357 

parameters, which is calculated by: 358 

𝐶 = 𝑠2(𝐽𝑇𝐽)−1                                                        (11) 359 

where 𝑠2  is the error variance between simulated and observed data and J is the 360 

Jacobian matrix. The Jacobian matrix is the first-order partial derivative of the cost 361 

function for each inverted hydraulic parameter and was obtained using a finite 362 

difference approach. The marginal posterior distribution of the estimated hydraulic 363 

parameters (𝑚𝑒𝑠𝑡) is assumed to be a multivariate normal distribution 𝑁 (𝑚𝑒𝑠𝑡, 𝐶). The 364 

uncertainty of the estimated hydraulic parameters can be approximated by the 365 

confidence interval for a given level (i.e. 99%) of significance calculated from the 366 

diagonal elements of 𝐶 . A matrix ( 𝐴 ) that provides the correlation between the 367 

estimated hydraulic parameters can be obtained by dividing the elements of 𝐶 with the 368 
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square root of the diagonal elements of 𝐶: 369 

𝐴𝑖𝑗 =
𝐶𝑖𝑗

𝐶
𝑖𝑖
1/2

𝐶
𝑗𝑗
1/2                                                         (12) 370 

This first-order approximation is an efficient way for estimating the uncertainty of the 371 

estimated hydraulic parameters for linear or nearly linear hydrologic models and the 372 

correlation matrix is a useful indicator of parameter correlation (Zhu and Mohanty, 373 

2003). If the hydrological model is highly non-linear, the first-order approximation may 374 

be unreliable. Therefore, we only focus on 𝐴𝑖𝑗 values larger than 0.6 in our analysis.   375 

 376 

3. Results and Discussion 377 

3.1  Synthetic infiltration experiments 378 

The simulated vertical SWC profiles at times where GPR measurements were obtained 379 

are shown in Fig. 4 for the synthetic modelling study with a 1-layer soil. It can be seen 380 

that the infiltration front moved down to 0.6 and 1.2 m depth after the first and second 381 

infiltration event, respectively. After the third infiltration event, the entire soil profile 382 

was saturated. Because of the high saturation after the third infiltration event, the 383 

infiltration front moved rapidly downward through the entire soil profile during 384 

infiltration events 4 and 5. The SWC estimates obtained from the first-arrival time of 385 

simulated horizontal borehole GPR measurements using a straight-wave approximation 386 

are also shown in Fig. 4b. It was found that SWC estimates obtained from GPR 387 

measurements at shallow depth (0 – 0.2 m) and near the infiltration front underestimated 388 

the actual SWC (Fig. 4b and 4c). This is attributed to the interference of the direct wave 389 

with critical refractions generated at the air – soil interface and the infiltration front 390 

where the dielectric permittivity changes sharply (Rucker and Ferré, 2004a). For this 391 
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reason, horizontal borehole GPR measurements at 0.1 m depth were previously not 392 

considered for SWC estimation (Klotzsche et al., 2019a). In the synthetic study, these 393 

data were also not used in the sequential inversion to reduce this interpretation error. 394 

Unfortunately, errors in SWC estimates near the infiltration front cannot be simply 395 

identified and eliminated and thus are expected to affect the estimated hydraulic 396 

parameters obtained with the sequential inversion approach. For the coupled inversion, 397 

the effect of the air-soil interface is considered in the simulation of GPR wave 398 

propagation and therefore there is no need to remove the measurement at 0.1 m depth. 399 

However, the information content with respect to the soil hydraulic properties is 400 

expected to be limited for these measurements because of the limited travel path length 401 

in the topsoil.  402 

3.1.1 Response surfaces for the 1-layer soil profile 403 

Fig. 5a presents the response surface based on true SWC data that would be obtained 404 

using point measurements (i.e. TDR) at the same depth as the borehole GPR 405 

measurements. The corresponding response surfaces for the noise-free coupled 406 

inversion of the synthetic GPR data are shown in Fig. 5b. It can be seen that the cost 407 

functions for point and GPR measurements have a very similar misfit distribution. This 408 

is not unexpected given that point and GPR measurements provide a similar type of 409 

information, albeit with a different sampling volume (Klotzsche et al., 2019a). The 410 

response surfaces can be used to gain insight in the expected parameter uncertainty. In 411 

the case of the 𝛼  parameter, the response surfaces for 𝑛 −  𝛼 ,    𝜃𝑟 − 𝛼 , and 𝜃𝑠 − 𝛼 412 

indicate that changes in the cost function are parallel to the 𝛼 axis. This suggests that the 413 

𝛼 parameter is independent from the other parameters. Although a clear minimum in the 414 

cost function value can be observed in these three surfaces, it is also elongated in the 415 
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direction of the 𝛼 axis suggesting that the 𝛼 parameter is expected to be less constrained 416 

in the inversion results compared to the other model parameters. According to the 417 

response surfaces for 𝜃𝑠 − 𝑛  and 𝜃𝑠 −  log( 𝐾𝑠 ), estimates of 𝜃𝑠  are expected to be 418 

correlated with the estimates of 𝑛 and log(𝐾𝑠). In the vicinity of the global minimum, 419 

the response surface is almost perpendicular to the 𝜃𝑠 axis and steep, which suggests 420 

that 𝜃𝑠  estimates are well-constrained during inversion. The global minimum in the 421 

response surface between log(𝐾𝑠) and 𝑛 is positioned in an elongated valley. A strong 422 

negative correlation between the parameter estimates for log(𝐾𝑠) and 𝑛 is thus expected, 423 

which implies that the GPR measurements may not contain sufficient information to 424 

simultaneously constrain both log(𝐾𝑠) and 𝑛.  425 

3.1.2 Inversion results for the 1-layer soil profile 426 

Sequential and coupled inversions were performed using noisy simulated GPR 427 

measurements for the 1-layer soil profile. In the case of the sequential inversion, the 428 

fitted SWC data showed a large misfit with the expected SWC (Fig. 6a), particularly for 429 

the shallow depths (0.2 m). This is also reflected in the large cost function value (0.05 430 

cm3 cm-3) for the optimized parameters, which is much higher than the added 431 

uncertainty in the SWC data (0.01 cm3 cm-3). Additionally, the SWC profiles simulated 432 

by using the estimated parameters from the sequential inversion showed large deviation 433 

with the SWC profiles from the true forward model (Fig. 7a). Due to the poor fit to the 434 

data, the hydraulic parameters were not accurately estimated by the sequential inversion 435 

(Table 3). In particular, 𝜃𝑠  was strongly underestimated and this resulted in a large 436 

mismatch between the inverted and true water retention curves (Fig. 8a). Moreover, the 437 

estimated value for 𝐾𝑠 was at the lower boundary of the feasible parameter space (0.035 438 
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cm min-1), which is almost equal to the infiltration rate. The 𝑛 and 𝛼 parameters were 439 

also overestimated, which resulted in a large difference between the inverted and true 440 

relative hydraulic conductivity function (Fig. 8b). As detailed above, sequential 441 

inversion of ZOP data may lead to erroneous estimates of hydraulic parameters if strong 442 

vertical gradients in SWC are present (e.g. infiltration-induced gradients). 443 

 444 

In the case of the parameters estimated from coupled inversion, the simulated travel 445 

time fitted the known travel time from the true model well (Fig. 6b) as expressed by the 446 

low RMSE of 0.1 ns. Also, the simulated SWC profiles matched well the SWC profiles 447 

from the true model (Fig. 7a). It should be noted that the coupled inversion was ended 448 

when the cost function value decreased to the standard deviation of the Gaussian noise 449 

(0.1 ns) (Table 3) to avoid overfitting. Therefore, the data simulated with the inverted 450 

model parameters have the same RMSE as the noise-free data and the simulated travel 451 

times based on the inverted parameters also match well with the noise-free data. 452 

 453 

The values for 𝜃𝑠  and 𝛼  were accurately estimated by coupled inversion (Table 3). 454 

However, the estimated values for 𝑛 and log(𝐾𝑠) showed a slight deviation from the true 455 

model, likely because of the strong correlation between these two parameters. The 456 

accurate estimation of the hydraulic parameters is also reflected in the good match 457 

between the estimated and known water retention and relative hydraulic conductivity 458 

function (Fig. 8a, 8b). The first-order uncertainty estimates for the coupled inversion are 459 

presented in Table 3 and the associated correlation matrix of the estimated hydraulic 460 

parameters is given in Table 4. The results indicate a strong negative correlation for 461 

log(𝐾𝑠) -  𝑛 and weak correlations between other pairs of hydraulic parameters. This is 462 
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consistent with the results of the response surface analysis and confirms that the first-463 

order approximation provides a meaningful assessment of parameter uncertainty.  464 

3.1.3 Inversion results for the 2-layer soil profile 465 

In a next step, the synthetic modelling study for the two-layer soil profile was analyzed.  466 

As expected from the results of the 1-layer soil profile, the parameters estimated using 467 

sequential inversion deviated considerably from the true hydraulic parameters (Table 3) 468 

and the estimated and true water retention (Fig. 8c, 8e) and relative hydraulic 469 

conductivity functions did not match well (Fig. 8d, 8f). Hence, sequential inversion will 470 

not be considered for the analysis of the actual field measurements. 471 

 472 

The results of the coupled inversion for the 2-layer soil profile generally were consistent 473 

with the results of the 1-layer profile, despite the dimensional expansion of the search 474 

space from four to eight parameters. Again, the estimated travel times from coupled 475 

inversion results nicely fitted the noisy synthetic travel time series (Fig. 9) and the 476 

vertical SWC profiles from the true model (Fig. 7b). In addition, accurate hydraulic 477 

parameter estimates were obtained (Table 3), as also confirmed by the minor differences 478 

in estimated and true water retention (Fig. 8c, 8e) and relative hydraulic conductivity 479 

functions (Fig. 8d, 8f). 480 

  481 

3.2  Inversion of experimental GPR data 482 

Coupled inversion was used to estimate the hydraulic parameters from the measured 483 

horizontal borehole GPR data shown in Fig. 10. The resulting fit to the measured data is 484 

also shown in Fig. 10 and the estimated soil hydraulic parameters are provided in Table 485 
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5. For comparison, the simulated data using the hydraulic parameters of Cai et al. (2017) 486 

are also provided, which are based on long-term TDR measurements also made during 487 

vegetation periods. The comparison between measured and simulated travel times 488 

showed a good correspondence at 0.1 m depth both for the inverted hydraulic 489 

parameters and the parameters from Cai et al. (2017) (Fig. 10). For 0.2 m depth, the 490 

measured GPR travel times steadily increased during the entire infiltration experiment, 491 

whereas the simulated travel times using both sets of hydraulic parameters remained 492 

constant after the second infiltration event because the soil reached saturation. This can 493 

be explained by the heterogeneous nature of the topsoil, which is supported by the large 494 

spatial variation of the GPR travel time data. For the subsoil, the key features of the 495 

measured time-lapse GPR data were well captured by the coupled inversion, also 496 

considering the spatial variability in the measured GPR data. The simulated travel time 497 

data based on the hydraulic parameters of Cai et al. (2017) did not match the observed 498 

GPR data well in the subsoil (i.e. at 0.6, 0.8, and 1.2 m depth). This is attributed to the 499 

small 𝐾𝑠2 used in Cai et al. (2017), which results in a slow movement of the infiltration 500 

front in the subsoil (Fig. 11), and therefore, a reduced variation in simulated water 501 

content at large depths. 502 

 503 

Measured and inverted GPR travel time data are directly compared in Fig. 12. The use 504 

of the hydraulic parameters from Cai et al. (2017) clearly resulted in a systematic 505 

underestimation of the measured data and a relatively high RMSE of 0.43 ns. The 506 

hydraulic parameters obtained using coupled inversion better matched the measured 507 

travel time data, as indicated by the lower RMSE (0.32 ns) and a higher R2 value (0.90). 508 

Nevertheless, the RMSE between inverted and measured GPR data is still relatively 509 



 

Page 23 of 41 

 

large. This is partly attributed to the heterogeneity of the topsoil, as the measurements at 510 

0.2 m depth make up a considerable part of the observed misfit. Furthermore, there is 511 

uncertainty in the initial SWC profile, which is solely based on GPR measurements at 512 

six different depths. Here, extrapolation from the shallowest borehole to the soil surface 513 

is problematic, and may have introduced some degree of uncertainty. Finally, there is 514 

intrinsic uncertainty in the field GPR measurements and data processing, such as the 515 

uncertainty in the position of the horizontal boreholes and the uncertainty in the 516 

determination of the time-zero or first arrival time of measured GPR data. These issues 517 

obviously did not affect the coupled inversion in the synthetic case study but they are 518 

highly relevant for the inversion of actual field measurements. 519 

 520 

The results of the first-order uncertainty estimation of the inverted hydraulic parameters 521 

are provided in Table 5. The uncertainty of 𝛼 and 𝜃𝑠 are comparable for the top- and 522 

subsoil, whereas 𝑛 and log(𝐾𝑠) showed a larger uncertainty for the subsoil. This can be 523 

explained by the strong negative correlation (𝐴  = -0.615) between 𝑛2  and log(𝐾𝑠2 ) 524 

(Table 6). All other pairs of hydraulic parameters did not show strong correlations. Fig. 525 

13 presents the water retention and relative hydraulic conductivity functions obtained 526 

using coupled inversion. The associated uncertainty was obtained by randomly plotting 527 

100 sets of hydraulic parameters drawn from the uncertainty bounds provided in Table 5. 528 

As can be seen from the uncertainty bounds, 𝜃𝑠  is associated with a relatively low 529 

uncertainty, whereas the 𝑛 value is associated with a larger uncertainty as indicated by 530 

the increasing spread of the functions at lower pressure heads. Furthermore, uncertainty 531 

in the water retention function is similar for the top- and subsoil (Fig. 13a, 13c). For 532 

comparison, the functions based on the hydraulic parameters of Cai et al. (2017) were 533 
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also provided. The water retention function obtained using coupled inversion clearly 534 

deviated from that of Cai et al. (2017), which showed a faster decrease of water content 535 

with matric potential due to the larger 𝑛 value. Additionally, a lower 𝜃𝑠 was estimated 536 

by the coupled inversion. 537 

 538 

The hydraulic conductivity functions obtained using coupled inversion also showed a 539 

similar uncertainty for the top- and subsoil (Fig. 13b, 13d). For the topsoil, the hydraulic 540 

conductivity function obtained using coupled inversion corresponded well with the 541 

function obtained in Cai et al. (2017). This is at least partly due to the similarity in the 542 

inverted 𝐾𝑠 obtained in this study and in Cai et al. (2017). However, there are obvious 543 

differences in the hydraulic conductivity functions for the subsoil due to differences in 544 

estimated 𝐾𝑠. There is a range of possible explanations for the observed differences. 545 

First, the estimation of 𝐾𝑠  is known to be scale-dependent. For example, laboratory 546 

methods using small sample volumes often lead to lower 𝐾𝑠 compared to estimates from 547 

in-situ measurement from a larger soil volume (Busch et al., 2013; Rovey and 548 

Cherkauer, 1995). The results of Cai et al. (2017) were based on TDR measurement that 549 

only cover a small areal fraction of the rhizotron facility, whereas the GPR 550 

measurements represent a larger volume (Klotzsche et al., 2019a). Thus, a higher 𝐾𝑠 is 551 

perhaps expected for the GPR measurements since the importance of preferential flow 552 

in macropores likely increased from the TDR to the GPR scale. The analysis presented 553 

here also indicated potential parameter correlations between 𝐾𝑠  and 𝑛. Since larger 𝑛 554 

values were reported by Cai et al. (2017), this may explain the small 𝐾𝑠 values. It is also 555 

important to note that Cai et al. (2017) estimated hydraulic parameters with a more 556 

complex model set-up that considered root water uptake. In particular, root water uptake 557 
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parameters were estimated alongside the hydraulic parameters, which might have 558 

hampered the correct estimation of the soil hydraulic parameters and likely increased 559 

the uncertainty in the estimated hydraulic parameters obtained by Cai et al. (2017). 560 

Finally, it is important to note that Cai et al. (2017) assumed free drainage as a lower 561 

boundary condition whereas a seepage face was used in this study.  562 

 563 

4. Summary and Conclusions 564 

In this study, we used both sequential and coupled inversion strategies to estimate 565 

hydraulic parameters from horizontal borehole GPR measurements during an infiltration 566 

experiment. First, a synthetic modelling study was set-up to compare the two inversion 567 

approaches independent of measurement and model errors. In a noise-free synthetic 568 

study using a 1-layer soil profile, a response surface analysis was used to evaluate 569 

correlation between hydraulic parameters. The results showed that the hydraulic 570 

parameters 𝑛  and log( 𝐾𝑠 ) were strongly correlated, which implies that the GPR 571 

measurements were not able to simultaneously constrain log(𝐾𝑠) and 𝑛. In a next step, 572 

synthetic SWC and travel time data with added noise were used to estimate hydraulic 573 

parameters using sequential and coupled inversion approaches, respectively. It was 574 

observed that a sequential inversion approach relying on the conventional straight-ray 575 

approximation to estimate SWC did not provide accurate hydraulic parameter estimates 576 

if strong vertical gradients in SWC were present due to infiltration. The coupled 577 

inversion approach, which combined 3D modelling of GPR measurements with a 1D 578 

vadose zone flow model, was able to provide accurate estimates of the hydraulic 579 

parameters both for a 1-layer and a 2-layer soil profile because interpretation errors 580 

associated with the straight-ray approximation were avoided. In a final step, horizontal 581 
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borehole GPR measurements made during an infiltration experiment were inverted 582 

using a coupled inversion approach. The estimated hydraulic parameters were 583 

reasonably consistent with water retention and relative hydraulic conductivity functions 584 

reported by Cai et al. (2017) for the same site. 585 

 586 

In conclusion, the coupled inversion of horizontal borehole GPR measurements 587 

provided accurate field-scale estimates of soil hydraulic parameters. Because of the 588 

larger sampling volume compared to point sensors, the estimated hydraulic parameters 589 

are expected to have an improved field representativeness. In future studies, coupled 590 

inversion of horizontal borehole GPR data may be used to estimate 2D and perhaps 591 

even 3D distributions of soil hydraulic parameters by considering all measured travel 592 

times over the profile, although this will obviously be associated with a higher 593 

computational effort. A disadvantage of the proposed approach is that GPR 594 

measurements are still taken manually and are thus time-consuming, whereas point 595 

sensors often allow automated data acquisition. As an alternative to GPR, other 596 

geophysical methods such as ERT can also be employed to estimate hydraulic 597 

parameters. ERT can investigate the subsurface with high resolution, and data 598 

acquisition can be automated. However, the electrical conductivity distribution obtained 599 

with ERT is not only sensitive to SWC but also depends on several other factors (e.g., 600 

clay content, pore water salinity) (Binley et al., 2015). This can complicate vadose zone 601 

model parameterization using ERT measurements considerably. It would be interesting 602 

to extend coupled inversion by considering the full GPR waveform instead of solely 603 

using travel time information, as was recently proposed for seismic data by Li et al. 604 

(2020). It is expected that this would increase the information content of the GPR 605 
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measurements in the inversion, and therefore reduce uncertainty in the estimated 606 

hydraulic parameters and provide chances to estimate hydraulic properties of multi-607 

layer soils.  608 
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Table 1  1 

Soil texture of fine soil, mass fraction of stones and porosity of the field according to 2 

Cai et al. (2016) 3 

Depth Sand Silt Clay Stones Porosity 

cm ————————Vol % —————               Mass %  

Topsoil (0 - 30)       35 52 13 50 0.33 

Subsoil (30 – 120)  37 47 16 69 0.25 

 4 
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Table 2 22 

Soil hydraulic parameters according to Cai et al. (2017) for the rhizotron facility. 23 

Depth 𝜃𝑟 𝜃𝑠 𝛼   𝑛  𝐾𝑠 𝑙 

cm cm3cm-3 cm-1 - cm min-1 - 

0 - 30 0.043 0.326 0.036 1.386 0.057 1.47 

30- 120 0.053 0.229 0.050 1.534 0.0004†;0.04†† -2.78 

† The 𝐾𝑠 value of subsoil estimated by Cai et al. (2017). 

†† The 𝐾𝑠 value used for synthetic study of 2-layered soil profile. 
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Table 3  42 

Inverted results of noisy synthetic data 43 

 

True 

value 

Bounds 

Inverted results 

Sequential inversion   Coupled inversion 

——————    homogenous soil profile    —————— 

𝜃𝑠 (cm3cm-3) 0.326 0.25 – 0.40 0.290 0.326±0.001† 

𝛼 (cm-1) 0.036 0.030 – 0.125 0.106 0.036±0.003 

𝑛 1.386 1.1 – 2.8 1.431 1.358±0.016 

log(𝐾𝑠) (cm min-1) -1.244 -1.456 – -0.276 -1.456 -1.168±0.038 

Cost-function - - 0.05 0.1 

——————    2-layered soil profile    —————— 

𝜃𝑠1 (cm3cm-3) 0.326 0.30 – 0.40 0.345 0.324±0.007 

𝛼1 (cm-1) 0.036 0.030 – 0.125 0.036 0.036±0.004 

𝑛1 1.386 1.1 – 2.8 1.506 1.312±0.024 

log(𝐾𝑠1) (cm min-1) -1.244 -1.456 – -0.276 -0.276 -0.996±0.048 

𝜃𝑠2 (cm3cm-3) 0.229 0.15 – 0.30 0.300 0.240±0.007 

𝛼2 (cm-1) 0.050 0.030 – 0.125 0.038 0.045±0.004 

𝑛2 1.534 1.1 – 2.8 1.696 1.431±0.020 

log(𝐾𝑠2) (cm min-1) -1.398 -1.456 – -0.276 -1.456 -1.108±0.048 

Cost-function - - 0.01 0.1 

†The values indicated the 99% confidence interval based on the first-order approximation. 44 
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 45 

 46 

 47 

 48 

Table 4 49 

 Correlation matrix of the estimated hydraulic parameters for the homogeneous profile 50 

  𝛼  

(cm-1) 

 𝑛  

(-) 

log(𝐾𝑠)  

(min cm-1) 

𝜃𝑠  

(cm3cm-3) 

𝑛 -0.335 1   

log(𝐾𝑠) 0.233 -0.694† 1  

𝜃𝑠 -0.086 0.256 0.186 1 

†The values indicated the pairs of parameters showing strong correlation.  51 

 52 

 53 
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 62 

 63 

 64 
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 67 

 68 

Table.5  69 

Inverted Soil hydraulic parameters for the rhizotron facility from measured GPR data. 70 

Depth    𝜃𝑟 𝜃𝑠 𝛼 𝑛 log(𝐾𝑠) l 

cm cm3cm-3 cm-1 -  cm min-1 - 

——————    [cost-function = 0.32 (ns)]    —————— 

0 – 30 0 0.328±0.011† 0.032±0.011 1.125±0.028 -0.983±0.266 0.5 

30 - 120 0 0.196±0.009 0.038±0.015 1.202±0.054 -1.022±0.349 0.5 

†The values indicated the 99% confidence interval based on the first-order approximation. 71 

 72 
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 86 

 87 

 88 

Table 6  89 

Correlation matrix of the inverted hydraulic parameters for the 2-layered model 90 

 𝛼1 𝑛1 log(𝐾𝑠1) 
𝛼2 𝑛2 log(𝐾𝑠2) 

𝜃𝑠1 𝜃𝑠2 

 cm-1 - min cm-1 cm-1 - min cm-1 cm3cm-3 cm3cm-3 

𝑛1 -0.388 1       

log(𝐾𝑠1)   0.324 0.045 1      

𝛼2 -0.077 0.129 0.138 1     

𝑛2 -0.119 -0.139 -0.163 -0.069 1    

log(𝐾𝑠2) 0.061 -0.059 -0.046 0.549 -0.615† 1   

𝜃𝑠1 -0.032 -0.226 0.189 0.040 -0.087 0.049 1  

𝜃𝑠2 -0.058 -0.347 -0.192 -0.083 0.404 0.070 -0.192 1 

†The values indicated the pairs of parameters showing strong correlation.  91 

 92 

 93 

 94 
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Fig. 1. (a) Schedule and amount of irrigated water for the five infiltration events and (b) GPR 1 

travel time data measured at 6 different depths during the infiltration experiment. The timing 2 

of the infiltration events was indicated by light green background. The spatial variation of the 3 

travel times along the 5.5 m borehole tube is indicated by the error bars. Note that different 4 

y-axis scales are used for the results of different depths. 5 

Fig. 2. Flow charts of (a) sequential inversion and (b) coupled inversion. 6 

Fig. 3. (a) The source wavelet. (b) A synthetic trace of air wave generated by gprMax3D. (c) A 7 

synthetic vertical SWC profile generated by HYDRUS-1D. (d) Six synthetic GPR traces 8 

obtained using the synthetic vertical SWC distribution shown in (c). The red crosses indicate 9 

the first arrival time of the GPR traces. 10 

Fig. 4. (a) Schedule of the synthetic infiltration events and synthetic GPR measurements. (b) 11 

Synthetic vertical SWC profiles from HYDRUS-1D (solid lines) and synthetic vertical SWC 12 

profiles estimated by GPR data (dashed lines) based on the vertical water content distribution 13 

used as inputs in gprMax3D. The colors indicate different measurement times. The GPR 14 

estimated SWCs at 0.2 – 1.2 m depth were inverted using a sequential inversion approach to 15 

estimate the hydraulic parameters for the 1-layer soil. (c) Differences between GPR-estimated 16 

and simulated HYDRUS-1D SWCs. The timing of the infiltration events is indicated by the 17 

light green background. Note that different y-axis scales are used for the results of different 18 

depths. 19 

Fig. 5. Response surfaces for different pairs of hydraulic parameters obtained using (a) true SWC 20 

data simulated by HYDRUS-1D and (b) noise-free synthetic GPR travel times. The cost 21 

function values are shown in logarithmic scale. Blank spaces indicate that the hydrological 22 

model did not converge for the selected parameters. The global minimum of the cost function 23 

is shown by the red cross. Also note that the cost functions of sequential and coupled inversion 24 

(𝐶𝑀𝑉𝐺(𝜃) and 𝐶𝑀𝑉𝐺(𝑡) ) have different units (cm3cm-3 and ns, respectively). 25 

Fig. 6. (a) Sequential inversion results of noisy GPR SWC estimations. (b) Coupled inversion 26 

results of noisy GPR travel time data. SWC data at 0.1 m depth was not used for sequential 27 

inversion. The timing of the infiltration events is indicated by the light green background. 28 

Note that different y-axis scales are used to show the results for different depths. 29 

Figure captions
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Fig. 7. Vertical SWC profiles of the (a) 1-layer and (b) 2-layer soil profile, which were simulated 30 

by using the true model (black solid line), parameters estimated from the coupled inversion 31 

(purple dashed line) and sequential inversion (yellow dashed line) at four different 32 

measurement times. Note that the different background indicates the different layers. 33 

Fig. 8. Water retention θ(h) and relative hydraulic conductivity Kr(h) function for the (a,b) 34 

synthetic homogeneous soil profile, and the (c,d) topsoil and (e,f) subsoil of the 2-layer profile. 35 

Fig. 9. Coupled inversion results of noisy GPR travel time data for 2-layer profile. The timing 36 

of the infiltration events is indicated by the light green background. Please note that results 37 

for different depths are shown with difference range of y-axis scale. 38 

Fig. 10. Coupled inversion results of measured GPR travel time data at different depths. Simulated 39 

travel time using the hydraulic parameters of Cai et al. (2017) and inverted model are shown 40 

in blue and black dashed lines, respectively. The timing of infiltration events is indicated by 41 

the light green background. Please note that different y-axis scales are used for the results at 42 

different depths.  43 

Fig. 11. Vertical SWC profiles simulated by using hydraulic parameters from the inversion of 44 

measured data (black lines) and Cai et al. (2017) (blue lines). Note that the different 45 

backgrounds indicate the different soil types. 46 

Fig. 12. Linear regression between measured and GPR travel time data obtained using the inverted 47 

hydraulic parameters (black squares) and the hydraulic parameters of Cai et al. (2017) (blue 48 

crosses). The 1:1 line is indicated by the dashed red line. 49 

Fig. 13. Water retention θ(h) and relative hydraulic conductivity Kr(h) function from 100 possible 50 

inverted hydraulic parameter sets (dark lines), the hydraulic parameters of Cai et al. (2017) 51 

(blue line) and the hydraulic parameters with the best fit (red line) for the (a, c) top soil and 52 

(b, d) subsoil. 53 
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