001     891909
005     20210810182029.0
024 7 _ |a 10.1007/s00382-021-05708-w
|2 doi
024 7 _ |a 0930-7575
|2 ISSN
024 7 _ |a 1432-0894
|2 ISSN
024 7 _ |a 2128/28158
|2 Handle
024 7 _ |a altmetric:103568131
|2 altmetric
024 7 _ |a WOS:000638541000001
|2 WOS
037 _ _ |a FZJ-2021-01821
082 _ _ |a 550
100 1 _ |a Ban, Nikolina
|0 0000-0002-1672-3655
|b 0
|e Corresponding author
245 _ _ |a The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626177711_3632
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Here we present the first multi-model ensemble of regional climate simulations at kilometer-scale horizontal grid spacing over a decade long period. A total of 23 simulations run with a horizontal grid spacing of ∼3 km, driven by ERA-Interim reanalysis, and performed by 22 European research groups are analysed. Six different regional climate models (RCMs) are represented in the ensemble. The simulations are compared against available high-resolution precipitation observations and coarse resolution (∼ 12 km) RCMs with parameterized convection. The model simulations and observations are compared with respect to mean precipitation, precipitation intensity and frequency, and heavy precipitation on daily and hourly timescales in different seasons. The results show that kilometer-scale models produce a more realistic representation of precipitation than the coarse resolution RCMs. The most significant improvements are found for heavy precipitation and precipitation frequency on both daily and hourly time scales in the summer season. In general, kilometer-scale models tend to produce more intense precipitation and reduced wet-hour frequency compared to coarse resolution models. On average, the multi-model mean shows a reduction of bias from ∼ −40% at 12 km to ∼ −3% at 3 km for heavy hourly precipitation in summer. Furthermore, the uncertainty ranges i.e. the variability between the models for wet hour frequency is reduced by half with the use of kilometer-scale models. Although differences between the model simulations at the kilometer-scale and observations still exist, it is evident that these simulations are superior to the coarse-resolution RCM simulations in the representing precipitation in the present-day climate, and thus offer a promising way forward for investigations of climate and climate change at local to regional scales.
536 _ _ |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)
|0 G:(DE-HGF)POF4-217
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Caillaud, Cécile
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Coppola, Erika
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pichelli, Emanuela
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sobolowski, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Adinolfi, Marianna
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ahrens, Bodo
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Alias, Antoinette
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Anders, Ivonne
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bastin, Sophie
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Belušić, Danijel
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Berthou, Ségolène
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Brisson, Erwan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Cardoso, Rita M.
|0 0000-0002-0259-6827
|b 13
700 1 _ |a Chan, Steven C.
|b 14
700 1 _ |a Christensen, Ole Bøssing
|0 0000-0002-9513-2588
|b 15
700 1 _ |a Fernández, Jesús
|0 0000-0002-3483-0008
|b 16
700 1 _ |a Fita, Lluís
|b 17
700 1 _ |a Frisius, Thomas
|b 18
700 1 _ |a Gašparac, Goran
|b 19
700 1 _ |a Giorgi, Filippo
|b 20
700 1 _ |a Görgen, Klaus
|0 P:(DE-Juel1)156253
|b 21
700 1 _ |a Haugen, Jan Erik
|b 22
700 1 _ |a Hodnebrog, Øivind
|b 23
700 1 _ |a Kartsios, Stergios
|b 24
700 1 _ |a Katragkou, Eleni
|b 25
700 1 _ |a Kendon, Elizabeth J.
|b 26
700 1 _ |a Keuler, Klaus
|b 27
700 1 _ |a Lavin-Gullon, Alvaro
|b 28
700 1 _ |a Lenderink, Geert
|b 29
700 1 _ |a Leutwyler, David
|b 30
700 1 _ |a Lorenz, Torge
|b 31
700 1 _ |a Maraun, Douglas
|b 32
700 1 _ |a Mercogliano, Paola
|b 33
700 1 _ |a Milovac, Josipa
|b 34
700 1 _ |a Panitz, Hans-Juergen
|b 35
700 1 _ |a Raffa, Mario
|b 36
700 1 _ |a Remedio, Armelle Reca
|b 37
700 1 _ |a Schär, Christoph
|b 38
700 1 _ |a Soares, Pedro M. M
|0 0000-0002-9155-5874
|b 39
700 1 _ |a Srnec, Lidija
|b 40
700 1 _ |a Steensen, Birthe Marie
|b 41
700 1 _ |a Stocchi, Paolo
|b 42
700 1 _ |a Tölle, Merja H.
|b 43
700 1 _ |a Truhetz, Heimo
|b 44
700 1 _ |a Vergara-Temprado, Jesus
|b 45
700 1 _ |a de Vries, Hylke
|b 46
700 1 _ |a Warrach-Sagi, Kirsten
|b 47
700 1 _ |a Wulfmeyer, Volker
|b 48
700 1 _ |a Zander, Mar Janne
|b 49
773 _ _ |a 10.1007/s00382-021-05708-w
|0 PERI:(DE-600)1471747-5
|p 275–302
|t Climate dynamics
|v 57
|y 2021
|x 1432-0894
856 4 _ |u https://juser.fz-juelich.de/record/891909/files/Ban2021_Article_TheFirstMulti-modelEnsembleOfR.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:891909
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)156253
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIM DYNAM : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21