000891971 001__ 891971
000891971 005__ 20220930130314.0
000891971 0247_ $$2doi$$a10.1039/D1SM00426C
000891971 0247_ $$2ISSN$$a1744-683X
000891971 0247_ $$2ISSN$$a1744-6848
000891971 0247_ $$2Handle$$a2128/27941
000891971 0247_ $$2altmetric$$aaltmetric:106182884
000891971 0247_ $$2pmid$$a33998621
000891971 0247_ $$2WOS$$aWOS:000651129400001
000891971 037__ $$aFZJ-2021-01848
000891971 082__ $$a530
000891971 1001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K. G.$$b0$$eCorresponding author
000891971 245__ $$aMotility-Induced Inter-Particle Correlations and Dynamics: a Microscopic Approach for Active Brownian Particles
000891971 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2021
000891971 3367_ $$2DRIVER$$aarticle
000891971 3367_ $$2DataCite$$aOutput Types/Journal article
000891971 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623418133_10329
000891971 3367_ $$2BibTeX$$aARTICLE
000891971 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891971 3367_ $$00$$2EndNote$$aJournal Article
000891971 520__ $$aAmongst the theoretical approaches towards dynamics and phase behaviour of suspensions of active Brownian particles (ABPs), no attempt has been made to specify motility induced inter-particle correlations as quantified by the pair-correlation function. Here we derive expressions for the pair-correlation function for ABPs with very short-ranged direct interactions for small and large swimming velocities and low concentrations. The pair-correlation function is the solution of a differential equation that is obtained from the Fokker-Planck equation for the probability density function of the positions and orientations of the ABPs. For large swimming Peclet numbers lambda, the pair-correlation function is highly asymmetric. The pair-correlation function attains a large value ~lambda within a small region of spatial extent ~1/lambda near contact of the ABPs when the ABPs approach each other. The pair-correlation function is small within a large region of spatial extent ~lambda^1/3 when the ABPs move apart, with a contact value that is essentially zero. From the explicit expressions for the pair-correlation function, Fick's diffusion equation is generalized to include motility. It is shown that mass transport, in case of large swimming velocities, is dominated by a preferred swimming direction that is induced by concentration gradients. The expression for the pair-correlation function derived in this paper could serve as a starting point to obtain approximate results for high concentrations, which could then be employed in a first-principle analysis of the dynamics and phase behaviour of ABPs at higher concentrations.
000891971 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000891971 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000891971 7001_ $$0P:(DE-Juel1)159317$$aBriels, Willem$$b1$$ufzj
000891971 7001_ $$0P:(DE-Juel1)173831$$aPark, Gun Woo$$b2
000891971 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D1SM00426C$$gp. 10.1039.D1SM00426C$$p5613-5632$$tSoft matter$$v17$$x1744-6848$$y2021
000891971 8564_ $$uhttps://juser.fz-juelich.de/record/891971/files/d1sm00426c.pdf$$yOpenAccess
000891971 8767_ $$d2021-04-21$$eHybrid-OA$$jPublish and Read
000891971 909CO $$ooai:juser.fz-juelich.de:891971$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery
000891971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b0$$kFZJ
000891971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159317$$aForschungszentrum Jülich$$b1$$kFZJ
000891971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173831$$aForschungszentrum Jülich$$b2$$kFZJ
000891971 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000891971 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000891971 9141_ $$y2021
000891971 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000891971 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000891971 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000891971 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891971 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000891971 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000891971 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000891971 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000891971 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-30$$wger
000891971 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2019$$d2021-01-30
000891971 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000891971 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000891971 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000891971 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000891971 920__ $$lyes
000891971 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000891971 980__ $$ajournal
000891971 980__ $$aVDB
000891971 980__ $$aUNRESTRICTED
000891971 980__ $$aI:(DE-Juel1)IBI-4-20200312
000891971 980__ $$aAPC
000891971 9801_ $$aAPC
000891971 9801_ $$aFullTexts