000891995 001__ 891995
000891995 005__ 20240712113109.0
000891995 0247_ $$2doi$$a10.1016/j.est.2021.102355
000891995 0247_ $$2ISSN$$a2352-152X
000891995 0247_ $$2ISSN$$a2352-1538
000891995 0247_ $$2Handle$$a2128/31124
000891995 0247_ $$2altmetric$$aaltmetric:100131286
000891995 0247_ $$2pmid$$aWOS:000635503100004
000891995 0247_ $$2WOS$$aWOS:000635503100004
000891995 037__ $$aFZJ-2021-01867
000891995 082__ $$a333.7
000891995 1001_ $$00000-0002-2916-3968$$aLi, Weihan$$b0$$eCorresponding author
000891995 245__ $$aDeep reinforcement learning-based energy management of hybrid battery systems in electric vehicles
000891995 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000891995 3367_ $$2DRIVER$$aarticle
000891995 3367_ $$2DataCite$$aOutput Types/Journal article
000891995 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1651746545_9197
000891995 3367_ $$2BibTeX$$aARTICLE
000891995 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000891995 3367_ $$00$$2EndNote$$aJournal Article
000891995 520__ $$aIn this paper, we propose an energy management strategy based on deep reinforcement learning for a hybrid battery system in electric vehicles consisting of a high-energy and a high-power battery pack. The energy management strategy of the hybrid battery system was developed based on the electrical and thermal characterization of the battery cells, aiming at minimizing the energy loss and increasing both the electrical and thermal safety level of the whole system. Primarily, we designed a novel reward term to explore the optimal operating range of the high-power pack without imposing a rigid constraint of state of charge. Furthermore, various load profiles were randomly combined to train the deep Q-learning model, which avoided the overfitting problem. The training and validation results showed both the effectiveness and reliability of the proposed strategy in loss reduction and safety enhancement. The proposed energy management strategy has demonstrated its superiority over the reinforcement learning-based methods in both computation time and energy loss reduction of the hybrid battery system, highlighting the use of such an approach in future energy management systems.
000891995 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000891995 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000891995 7001_ $$0P:(DE-HGF)0$$aCui, Han$$b1
000891995 7001_ $$0P:(DE-HGF)0$$aNemeth, Thomas$$b2
000891995 7001_ $$00000-0003-2031-6304$$aJansen, Jonathan$$b3
000891995 7001_ $$0P:(DE-HGF)0$$aÜnlübayir, Cem$$b4
000891995 7001_ $$0P:(DE-HGF)0$$aWei, Zhongbao$$b5
000891995 7001_ $$aZhang, Lei$$b6
000891995 7001_ $$0P:(DE-HGF)0$$aWang, Zhenpo$$b7
000891995 7001_ $$0P:(DE-HGF)0$$aRuan, Jiageng$$b8
000891995 7001_ $$00000-0001-5322-2019$$aDai, Haifeng$$b9
000891995 7001_ $$0P:(DE-HGF)0$$aWei, Xuezhe$$b10
000891995 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b11
000891995 773__ $$0PERI:(DE-600)2826805-2$$a10.1016/j.est.2021.102355$$gVol. 36, p. 102355 -$$p102355 -$$tJournal of energy storage$$v36$$x2352-152X$$y2021
000891995 8564_ $$uhttps://juser.fz-juelich.de/record/891995/files/Deep%20reinforcement%20learning-based%20energy%20management%20of%20hybrid%20battery%20systems%20in%20electric%20vehicles%20-%20GetFileAttachment.pdf$$yOpenAccess
000891995 8564_ $$uhttps://juser.fz-juelich.de/record/891995/files/Journal_Article-2.pdf$$yRestricted
000891995 909CO $$ooai:juser.fz-juelich.de:891995$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000891995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b11$$kFZJ
000891995 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000891995 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000891995 9141_ $$y2021
000891995 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000891995 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000891995 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000891995 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ENERGY STORAGE : 2019$$d2021-01-28
000891995 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000891995 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000891995 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000891995 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000891995 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000891995 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000891995 920__ $$lyes
000891995 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000891995 9801_ $$aFullTexts
000891995 980__ $$ajournal
000891995 980__ $$aVDB
000891995 980__ $$aUNRESTRICTED
000891995 980__ $$aI:(DE-Juel1)IEK-12-20141217
000891995 981__ $$aI:(DE-Juel1)IMD-4-20141217