001     891995
005     20240712113109.0
024 7 _ |a 10.1016/j.est.2021.102355
|2 doi
024 7 _ |a 2352-152X
|2 ISSN
024 7 _ |a 2352-1538
|2 ISSN
024 7 _ |a 2128/31124
|2 Handle
024 7 _ |a altmetric:100131286
|2 altmetric
024 7 _ |a WOS:000635503100004
|2 pmid
024 7 _ |a WOS:000635503100004
|2 WOS
037 _ _ |a FZJ-2021-01867
082 _ _ |a 333.7
100 1 _ |a Li, Weihan
|0 0000-0002-2916-3968
|b 0
|e Corresponding author
245 _ _ |a Deep reinforcement learning-based energy management of hybrid battery systems in electric vehicles
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651746545_9197
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper, we propose an energy management strategy based on deep reinforcement learning for a hybrid battery system in electric vehicles consisting of a high-energy and a high-power battery pack. The energy management strategy of the hybrid battery system was developed based on the electrical and thermal characterization of the battery cells, aiming at minimizing the energy loss and increasing both the electrical and thermal safety level of the whole system. Primarily, we designed a novel reward term to explore the optimal operating range of the high-power pack without imposing a rigid constraint of state of charge. Furthermore, various load profiles were randomly combined to train the deep Q-learning model, which avoided the overfitting problem. The training and validation results showed both the effectiveness and reliability of the proposed strategy in loss reduction and safety enhancement. The proposed energy management strategy has demonstrated its superiority over the reinforcement learning-based methods in both computation time and energy loss reduction of the hybrid battery system, highlighting the use of such an approach in future energy management systems.
536 _ _ |a 122 - Elektrochemische Energiespeicherung (POF4-122)
|0 G:(DE-HGF)POF4-122
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cui, Han
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nemeth, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jansen, Jonathan
|0 0000-0003-2031-6304
|b 3
700 1 _ |a Ünlübayir, Cem
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wei, Zhongbao
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhang, Lei
|b 6
700 1 _ |a Wang, Zhenpo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ruan, Jiageng
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dai, Haifeng
|0 0000-0001-5322-2019
|b 9
700 1 _ |a Wei, Xuezhe
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 11
773 _ _ |a 10.1016/j.est.2021.102355
|g Vol. 36, p. 102355 -
|0 PERI:(DE-600)2826805-2
|p 102355 -
|t Journal of energy storage
|v 36
|y 2021
|x 2352-152X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/891995/files/Deep%20reinforcement%20learning-based%20energy%20management%20of%20hybrid%20battery%20systems%20in%20electric%20vehicles%20-%20GetFileAttachment.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/891995/files/Journal_Article-2.pdf
909 C O |o oai:juser.fz-juelich.de:891995
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ENERGY STORAGE : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21