001     892017
005     20211126141917.0
024 7 _ |a 10.1016/j.scitotenv.2021.147175
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a 2128/27695
|2 Handle
024 7 _ |a 33895511
|2 pmid
024 7 _ |a WOS:000657589200003
|2 WOS
037 _ _ |a FZJ-2021-01877
082 _ _ |a 610
100 1 _ |a Žydelis, R.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Future climate change will accelerate maize phenological development and increase yield in the Nemoral climate
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637847839_20874
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Climate change will bring warmer and wetter conditions and more frequent extreme events in the Nemoral climate zone. These changes are expected to affect maize growth and yields. In this study, we applied the AgroC model to assess climate change impact on changes in growing environmental conditions, growing season length, yield and potential yield losses due to multiple abiotic stresses. The model was calibrated and validated using data from dedicated field experiments conducted in Lithuania during four meteorologically contrasting years (2015, 2016, 2017 and 2019). We simulated the climate impacts on rainfed maize for long-term future climate conditions from 2020 to 2100 under the RCP2.6 (low), RCP4.5 (medium) and RCP8.5 (high) emission scenarios. As a result, we found that air temperature, sum of growing degree days and amount of precipitation during the growing season of maize will increase, especially under medium and higher emission scenarios (RCP4.5 and RCP8.5), with significantly positive effect on yields. The simulation results showed that average maize grain yield will increase under RCP2.6 by 69 kg ha−1 per decade, under RCP4.5 by 197 kg ha−1 per decade and under RCP8.5 by 304 kg ha−1 per decade. The future potential maize yield reveals a progressive increase with a surplus of +10.2% under RCP4.5 and +14.4% under RCP8.5, while under RCP2.6 the increase of potential yield during the same period will be statistically not significant. The yield gap under RCP2.6 and RCP4.5 will fluctuate within a rather narrow range and under RCP8.5, it will decrease
536 _ _ |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)
|0 G:(DE-HGF)POF4-217
|c POF4-217
|f POF IV
|x 0
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Weihermüller, L.
|0 P:(DE-Juel1)129553
|b 1
|u fzj
700 1 _ |a Herbst, Michael
|0 P:(DE-Juel1)129469
|b 2
|u fzj
773 _ _ |a 10.1016/j.scitotenv.2021.147175
|g Vol. 784, p. 147175 -
|0 PERI:(DE-600)1498726-0
|p 147175 -
|t The science of the total environment
|v 784
|y 2021
|x 0048-9697
856 4 _ |u https://juser.fz-juelich.de/record/892017/files/Final_accepted_Manuscript.pdf
|y Published on 2021-04-18. Available in OpenAccess from 2023-04-18.
909 C O |o oai:juser.fz-juelich.de:892017
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129553
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129469
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 1
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2019
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI TOTAL ENVIRON : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21