001     892035
005     20240709094449.0
037 _ _ |a FZJ-2021-01894
041 _ _ |a English
100 1 _ |a ZHOU, Wenyu
|0 P:(DE-Juel1)176867
|b 0
|e Corresponding author
111 2 _ |a Keramik 2021
|c Online
|d 2021-04-19 - 2021-04-21
|w Germany
245 _ _ |a Mechanical properties of BaCe0.65Zr0.2Y0.15O3-δ proton-conducting material determined using different nanoindentation methods
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1619595764_5283
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Proton-conducting membranes have great potential for applications in proton conducting membrane reactors forthe production of commodity chemicals or synthetic fuels as well as for use in solid oxide fuel cells. However, toensure the long-term structural stability under operation relevant conditions, the mechanical properties of themembrane materials need to be characterized. BaCe0.65Zr0.2Y0.15O3-δ is of particular interest due to its provenfunctional properties. In this research work, the mechanical properties of BaCe0.65Zr0.2Y0.15O3-δ were determinedon different length scales using different methods including impulse excitation, indentation testing, and micropillarsplitting. A detailed microstructural analysis of pillars revealed that irregular results are caused by porescausing crack deflection and complex crack patterns.
536 _ _ |a 123 - Chemische Energieträger (POF4-123)
|0 G:(DE-HGF)POF4-123
|c POF4-123
|x 0
|f POF IV
700 1 _ |a Malzbender, Jürgen
|0 P:(DE-Juel1)129755
|b 1
700 1 _ |a Zeng, Fanlin
|0 P:(DE-Juel1)173865
|b 2
700 1 _ |a Deibert, Wendelin
|0 P:(DE-Juel1)144923
|b 3
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
700 1 _ |a Schwaiger, Ruth
|0 P:(DE-Juel1)179598
|b 5
700 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 6
909 C O |o oai:juser.fz-juelich.de:892035
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176867
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)179598
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129637
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|x 0
914 1 _ |y 2021
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21