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Atomistic spin models are of great value for predicting and understanding the magnetic properties of real
materials, and extensions of the existing models open routes to new physics and potential applications. The
Dzyaloshinskii-Moriya interaction is the prototype for chiral magnetic interactions, and several recent works
have uncovered or proposed various types of generalized chiral interactions. However, in some cases the
proposed interactions or their interpretation do not comply with basic principles such as being independent
of the magnetic configuration from which they are evaluated, or even obeying time-reversal invariance. In this
Letter, we present a simple explanation for the origin of these puzzling findings and point out how to resolve
them.
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Introduction. The magnetic interaction between two spin
moments is partitioned into isotropic, anisotropic, scalar, and
vector chiral interactions. The latter is commonly referred
to as the chiral magnetic interaction and was developed by
Dzyaloshinskii [1] and Moriya [2]. What is commonly un-
derstood by “Dzyaloshinskii-Moriya interaction” (DMI) is an
antisymmetric exchange interaction that can be written for
two spin moments as D12 · (S1 × S2). The interaction vector
D12 obeys the symmetry rules enumerated by Moriya [2].
Different microscopic mechanisms have been identified that
lead to the DMI [2–6], all having in common the need for the
relativistic spin-orbit interaction and an inversion asymmetric
environment. The DMI underpins many interesting magnetic
systems, such as weak ferromagnetism in antiferromagnets
[1], spin spiral ground states [7], chiral magnetic domain walls
[8], and magnetic skyrmions [9,10].

With the advent of realistic electronic structure calcula-
tions, it became possible to compute the magnitude and other
properties of the magnetic exchange interactions for a given
material. A real-space approach to the pairwise interactions
(the infinitesimal rotation method) was introduced in Ref. [11]
and later generalized for the calculation of the DMI and other
anisotropic interactions [12,13]. The central idea is to estab-
lish a mapping between the electronic structure calculations
and a suitably defined atomistic spin model, but soon it was
realized that this mapping is not trivial and can lead to a
dependence of the computed interactions on the reference
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magnetic configuration [14–16]. A large part of these de-
pendencies can be accounted for by expanding the reference
atomistic spin model to include not only Heisenberg pair-
wise interactions but also biquadratic interactions [14,15,17],
leading to generalized infinitesimal rotation approaches to
multispin interactions [18,19].

A different approach consists in computing the energies
of different magnetic configurations and parametrizing a spin
model that can reproduce these energies. The general frame-
work is called the spin cluster expansion and is easily applied
to systematically map the complete set of interactions for a
finite number of magnetic moments [20–23]. We have recently
implemented the self-consistent spin cluster expansion within
a constrained density functional theory framework [24,25],
leading to the identification of those four-spin interactions that
are counterparts of the DMI: the chiral biquadratic interaction
[24] in magnetic dimers, and its multisite counterparts in
trimers and tetramers [25], with some of these interactions
not being constrained by Moriya’s rules. The significance of
the chiral multispin interactions has also been recognized in
Refs. [18,26,27].

Given the large interest in chiral magnetic interactions, we
note that a few recent works have advanced unwarranted in-
terpretations of otherwise sound first-principles calculations,
such as chiral three-spin interactions that are incompatible
with time-reversal symmetry [18], or a very large DMI [28,29]
that depends strongly on the magnetic configuration and does
not rely on the spin-orbit interaction. The latter contradicts the
understanding of the DMI as established by the magnetism
community over the past 60 years, without offering a com-
pelling theoretical justification for its revision. The purpose
of this Letter is to present a simple explanation for these

2469-9950/2021/103(14)/L140408(5) L140408-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8835-5580
https://orcid.org/0000-0002-7077-1244
https://orcid.org/0000-0001-9863-3647
https://orcid.org/0000-0001-5524-9995
https://orcid.org/0000-0001-9987-4733
https://orcid.org/0000-0001-7430-3627
https://orcid.org/0000-0003-2573-2841
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.L140408&domain=pdf&date_stamp=2021-04-23
https://doi.org/10.1103/PhysRevB.103.L140408


MANUEL DOS SANTOS DIAS et al. PHYSICAL REVIEW B 103, L140408 (2021)

FIG. 1. Dependence of the total energy of Mn3Sn on the magnetic configuration. (a) Top view of the unit cell of Mn3Sn with noncollinear
magnetic structure viewed along the z axis. The spheres indicate the Mn atoms on the z = 1/4 plane (blue) and on the z = 3/4 plane (green).
Sn is not shown. (b) Total energy for the magnetic configurations shown in (a) fitted to the spin model of Eq. (1) including only isotropic
two-sublattice (J12) or also biquadratic and three-sublattice interactions (B12 and B123, respectively).

proposed chiral interactions that we term “improper,” comply-
ing with basic symmetry requirements on the atomistic spin
model.

Proper and improper magnetic interactions. Before we
discuss our results, we define the terminology that we use
in this Letter. We term as “proper” those magnetic interac-
tions which are parametrized by interaction coefficients which
are independent of the magnetic state of the system and are
invariant under time-reversal symmetry (so they consist of
an even number of spins), and if these properties are not
satisfied, we use the term “improper.” It is always possible
to give a complete parametrization of the magnetic energy
using only proper magnetic interactions [20–25]. For exam-
ple, our analysis of a generic electronic model in Appendix B
of Ref. [24] shows that only terms with an even number of
magnetic moments appear in an infinite series expansion of
the electronic grand potential (so no three-spin terms as advo-
cated in Ref. [18]) and that terms containing only one explicit
cross product between them require the spin-orbit interaction
(unlike the effective DMI of Refs. [28,29]).

Improper DMI in Mn3Sn. We start by reinterpreting the
first-principles calculations performed for Mn3Sn in Ref. [28].
This compound belongs to the space group P63/mmc (194).
The crystallographic unit cell shown in Fig. 1(a) consists of
six Mn atoms that are partitioned into three ferromagnetic
sublattices denoted by the indices i, j ∈ {1, 2, 3}. Each sub-
lattice contains two atoms in the unit cell, one at z = 1/4 and
one at z = 3/4. Reference [28] computed the total energies
for the family of magnetic configurations obtained when the
magnetizations for sublattices 2 and 3 are rotated by an angle
±θ relative to that in sublattice 1. Hence θ = 0◦ denotes the
ferromagnetic configuration, θ = 120◦ denotes the triangular
Néel configuration shown in Fig. 1(a), and θ = 180◦ is a
ferrimagnetic up-down-down state.

We repeated the total energy calculations of Ref. [28]
employing the all-electron Korringa-Kohn-Rostoker Green’s
function method in full potential [30] with spin-orbit cou-
pling added to the scalar relativistic approximation [31]. We
performed self-consistent calculations without constraints by
treating exchange and correlation effects in the local spin

density approximation [32]. We adopt the experimental lattice
geometry following Ref. [33]. The scattering wave functions
are expanded up to an angular momentum cutoff of �max = 3,
and a k mesh of 24 × 24 × 30 is used. Our results shown
in Fig. 1(b) are consistent with Ref. [28], exhibiting a pro-
nounced fourth-order type energy behavior with respect to
the rotation of the angle θ . Without spin-orbit interaction the
antiferromagnetic triangular Néel states at θ = 120◦ and θ =
240◦ are degenerate. Including the spin-orbit interaction, the
well-known DMI emerges, and the magnetic structure with �5

symmetry corresponding to θ = 240◦ is lower in energy by
8 meV than the one with �3 symmetry denoted by θ = 120◦,
in agreement with the discussion of Ref. [34].

We depart from the analysis in Ref. [28] by fitting the de-
pendence of our total energies on the magnetic configuration
of the Mn sublattices i according to the extended spin model
that we presented in Refs. [25,35] (|Si| = 1):

E = J12(S1 · S2 + S2 · S3 + S3 · S1)

+ B12[(S1 · S2)2 + (S2 · S3)2 + (S3 · S1)2]

+ B123[(S1 · S2)(S2 · S3) + (S2 · S3)(S3 · S1)

+ (S3 · S1)(S1 · S2)]. (1)

Here, we define the bilinear isotropic interaction between
two sublattices with strength J12, and two types of four-spin
isotropic interactions between the sublattices: biquadratic in-
teractions with strength B12 and three-sublattice interactions
with strength B123. Figure 1(b) shows that the fit using only the
bilinear two-sublattice interactions is quite poor, as claimed
in Ref. [28], while inclusion of the four-spin two- and three-
sublattice interactions fits the full angular dependence almost
perfectly.

To see how the interpretation in terms of an improper
Dzyaloshinskii-Moriya sublattice interaction can come about,
we follow the strategy of Ref. [28] and derive the first-order
change in the magnetic energy due to a small deviation of
one of the spin directions for the spin model of Eq. (1).
We replace S1 → S1 + δS1 and find how the energy given
by Eq. (1) changes due to this perturbation, with the result
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δE1 = δE J
1 + δEB

1 . The two contributions are

δE J
1 = J12(S2 + S3) · δS1, (2)

δEB
1 = 2B12 [(S1 · S2) S2 + (S3 · S1) S3] · δS1. (3)

The other four-spin interaction is discussed later. We have
nothing to remark about δE J

1, but δEB
1 can be expressed in an

alternative form using the vector identity

(A × B) · (C × D) = (A · C) (B · D) − (A · D) (B · C). (4)

For small deviations, S1 · δS1 = 0, and we find

δEB
1 = 2B12 (S1 × S2) · (S2 × δS1)

+ 2B12 (S1 × S3) · (S3 × δS1)

= D21 · (S2 × δS1) + D31 · (S3 × δS1). (5)

These effective DM vectors are artificial, as they were ob-
tained by rearranging the contribution from the isotropic
four-spin sublattice interactions. Expanding their definition,
e.g.,

D21 = 2B12 (S1 × S2) = 2B12 sin θ z = D21(θ ) z. (6)

It follows that these effective DM vectors strongly depend on
the magnetic configuration chosen for their calculation. They
vanish for collinear magnetic configurations (θ = 0◦, 180◦),
have a maximum magnitude of 2B12 ≈ 150 meV, and do not
arise from the spin-orbit interaction. Lastly, they are achiral,
as chirality reversal is achieved by θ → −θ , which leads to
D21(−θ ) = −D21(θ ), and so both chiralities have the same
energy. All these properties match those reported in Ref. [28]
including the magnitude of the interaction (see Fig. 3 within
that reference), which points to isotropic four-spin sublattice
interactions as the origin of the effective DMI proposed in that
work.

Improper DMI in magnetic trimers. The authors of Ref. [28]
have recently published a related work [29] which applies the
same reasoning to magnetic Cr and Mn trimers on the Ag(111)
and Au(111) surfaces. One methodological difference is that
the improper DMI was computed by considering changes in
two spins simultaneously, e.g., δS1 and δS2. Our spin model
from Eq. (1) in combination with the vector identity of Eq. (4)
leads to the second-order variations of the Heisenberg interac-
tion

δE J
12 = J12 δS1 · δS2 (7)

and of the biquadratic and three-site interactions

δEB
12 = 2B12 (S1 · S2) (δS1 · δS2)

+ B123 (S1 + S2) · S3 (δS1 · δS2)

+ 2B12 (S1 × S2) · (δS2 × δS1)

+ B123 (S1 × S3 + S3 × S2) · (δS2 × δS1)

+ B123 (δS1 · S3) (S3 · δS2). (8)

The first and second lines are contributions to an effective
Heisenberg-like interaction, the third and fourth lines to an
improper DMI-like interaction, and the last line to an ar-
tificial Ising-like interaction. This shows that the effective
interactions obtained by varying two spin orientations can
also generate contributions which are hard to interpret without
comparing to an appropriate spin model, and can depend not

only on the spin alignment for the pair of interest (spins 1
and 2) but also on how they align with the rest of the sys-
tem (spin 3). We propose that these interactions explain the
very large improper DMI reported in Table 2 of Ref. [29] in
contrast with the proper one driven by the spin-orbit interac-
tion. Unfortunately, a direct quantitative comparison between
Ref. [29] and our published results for Cr and Mn trimers on
Au(111) in Refs. [22] and [25] is not possible due to large
computational differences. For the benefit of the reader, we
note that the magnetic interactions were evaluated in Ref. [22]
by fitting the energies of a large number of magnetic configu-
rations in combination with the magnetic force theorem, while
in Ref. [25] they were fitted to the self-consistent constraining
fields stabilizing a selected number of symmetry-inequivalent
magnetic configurations. For a quick comparison between the
magnitudes of the proper and improper DMI using our own
results, we select the Cr trimer on Au(111) and adopt the
triangular Néel state. In the notation of Ref. [25], the z com-
ponent of the improper DMI for this magnetic configuration
is Dz

21 = √
3(B12 − B123), which amounts to −20 meV [22]

or −23 meV [25]. The improper DMI is much larger than the
proper DMI, 0.97 meV [22] or 1.7 meV [25], but still more
than six times smaller than the value of 134 meV reported by
Ref. [28]. We find it hard to explain such a large discrepancy
solely with computational differences between our two works
and Ref. [28]. As Refs. [22] and [25] use a systematic map-
ping of the energy as a function of the magnetic configuration,
such a large missing contribution to the energy would have
been noticed. We now look at the dependence of the artificial
DMI on a different set of magnetic configurations [25,29], as
illustrated in Fig. 2(a):

S1 =
(√

3

2
sin θ,

1

2
sin θ, cos θ

)
, (9a)

S2 =
(

−
√

3

2
sin θ,

1

2
sin θ, cos θ

)
, (9b)

S3 = (0,− sin θ, cos θ ). (9c)

These keep the threefold rotation symmetry about the z
axis. Here, θ = 0◦ is a ferromagnetic arrangement with the
spin moments pointing along +z, θ = 90◦ is the triangular
Néel configuration, and θ = 180◦ is a ferromagnetic arrange-
ment with the spin moments pointing along −z. The improper
DMI for a representative pair follows from Eq. (8) and the
chosen magnetic configuration:

Dy
21(θ ) = −

√
3
(
B12 + 1

2 B123
)

sin 2θ, (10a)

Dz
21(θ ) =

√
3(B12 − B123) sin2 θ. (10b)

This shows that the same isotropic four-spin interactions
can lead to different components of the improper DMI, de-
pending on the reference magnetic configuration. The angular
dependence of the improper DMI is shown in Fig. 2(b), using
the data from Refs. [22,25].

Improper three-spin chiral interactions. We have argued
so far that isotropic four-spin interactions can be mislead-
ingly interpreted as improper chiral interactions. However, we
have recently identified proper chiral four-spin interactions in
several independent works [25–27], so we now explain how
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FIG. 2. Dependence of the improper DMI on the magnetic con-
figuration for a Cr trimer on Au(111). (a) Noncollinear magnetic
structure. The blue spheres represent Cr atoms, and the golden
spheres represent Au atoms. (b) Dependence of the improper DMI
between atoms 1 and 2 due to isotropic four-spin interactions on the
magnetic configuration, according to Eqs. (10a) and (10b) and the
parameters B12 = −4.42 meV and B123 = 7.06 meV from Ref. [22]
and B12 = −5.10 meV and B123 = 8.06 meV from Ref. [25].

they fit the story. The concept of effective two-spin inter-
actions is useful to characterize the local energy landscape
around a reference magnetic configuration. In this context,
the isotropic four-spin interactions can be shown to renor-
malize the isotropic Heisenberg interaction, while the chiral
four-spin interactions renormalize the conventional DMI [25].
These chiral four-spin interactions can also explain the im-
proper chiral three-spin interactions introduced in Ref. [18].
There the infinitesimal rotation method was extended to a
multispin multisite framework, which among other things was
used to identify the energy change from introducing spin
deviations on three distinct sites. We stress that we do not
doubt the numerical results of Ref. [18], but point out that
their proposed interpretation with a chiral three-spin three-site
interaction built out of the scalar spin chirality of the perturbed
moments, δS1 · (δS2 × δS3), is manifestly inconsistent with
time-reversal symmetry. They remedied this inconsistency
by defining a magnetic-configuration-dependent interaction
strength, in a way similar to the previously discussed improper
DMI. The origin of these improper three-spin interactions can
be found by starting from the form of the chiral four-spin
interactions given in Ref. [27],

EC = (C123 · S1)S1 · (S2 × S3) + · · · . (11)

The dots denote other terms obtained by permutations of
{1, 2, 3}. Note that this form of a chiral three-site interaction
incorporates some symmetries of the underlying lattice and
cannot describe the general case as discussed in Ref. [25]. If
we introduce small deviations of the three spin orientations
simultaneously, we arrive at

�EC
123 = (C123 · S1)δS1 · (δS2 × δS3) + · · · (12)

= J (1)
123 δS1 · (δS2 × δS3) + · · · , (13)

where J (1)
123 is a contribution to the chiral three-spin interaction

coefficient in the notation of Ref. [18]. It depends on the
proper chiral four-spin interaction vector C123 [25–27] and
how the reference magnetic configuration is aligned with it.
We see no reason to introduce and use such improper chiral
three-spin interactions when the proper chiral four-spin ones
have already been uncovered and described. Surprisingly, the
authors of Ref. [18] also acknowledge this in practice, as
stated in the text following Eq. (29) within that work.

Conclusions. We showed how isotropic four-spin interac-
tions can be misinterpreted as improper DMI-like interactions
that have very pathological properties, chiefly being strongly
dependent on the reference magnetic configuration used in the
calculation. The “natural” choice of a collinear ferromagnetic
state as the reference state avoids most of these problems
due to all magnetic moments being collinear. Great care must
be exercised in interpreting the results of the infinitesimal
rotation approach if the reference state is not collinear, and
we propose that for this to be successful the appropriate spin
model must be defined beforehand in accordance with all
the symmetries of the material (see Ref. [25] for a detailed
discussion). Lastly, we remark that improper chiral three-spin
three-site interactions can likewise be obtained from varying
the orientations of three magnetic moments and misinterpret-
ing the result [18]. These arise from proper chiral four-spin
interactions [25–27], which interestingly were also identified
in Ref. [18], and acquire a dependence on the magnetic config-
uration through the orientation of the undisturbed fourth spin.
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