000892070 001__ 892070
000892070 005__ 20220930130314.0
000892070 0247_ $$2doi$$a10.1093/cercor/bhab044
000892070 0247_ $$2ISSN$$a1047-3211
000892070 0247_ $$2ISSN$$a1460-2199
000892070 0247_ $$2Handle$$a2128/28167
000892070 0247_ $$2altmetric$$aaltmetric:104497823
000892070 0247_ $$2pmid$$a33884421
000892070 0247_ $$2WOS$$aWOS:000741348300001
000892070 037__ $$aFZJ-2021-01921
000892070 082__ $$a610
000892070 1001_ $$0P:(DE-Juel1)177058$$aWu, Jianxiao$$b0$$eCorresponding author
000892070 245__ $$aA Connectivity-Based Psychometric Prediction Framework for Brain–Behavior Relationship Studies
000892070 260__ $$aOxford$$bOxford Univ. Press$$c2021
000892070 3367_ $$2DRIVER$$aarticle
000892070 3367_ $$2DataCite$$aOutput Types/Journal article
000892070 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626180387_17001
000892070 3367_ $$2BibTeX$$aARTICLE
000892070 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892070 3367_ $$00$$2EndNote$$aJournal Article
000892070 520__ $$aThe recent availability of population-based studies with neuroimaging and behavioral measurements opens promising perspectives to investigate the relationships between interindividual variability in brain regions' connectivity and behavioral phenotypes. However, the multivariate nature of connectivity-based prediction model severely limits the insight into brain-behavior patterns for neuroscience. To address this issue, we propose a connectivity-based psychometric prediction framework based on individual regions' connectivity profiles. We first illustrate two main applications: 1) single brain region's predictive power for a range of psychometric variables and 2) single psychometric variable's predictive power variation across brain region. We compare the patterns of brain-behavior provided by these approaches to the brain-behavior relationships from activation approaches. Then, capitalizing on the increased transparency of our approach, we demonstrate how the influence of various data processing and analyses can directly influence the patterns of brain-behavior relationships, as well as the unique insight into brain-behavior relationships offered by this approach.
000892070 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000892070 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892070 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B$$b1
000892070 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b2
000892070 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R$$b3
000892070 7001_ $$0P:(DE-HGF)0$$aSchwender, Holger$$b4
000892070 7001_ $$0P:(DE-HGF)0$$aYeo, B T Thomas$$b5
000892070 7001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b6
000892070 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhab044$$gp. bhab044$$n8$$p3732–3751$$tCerebral cortex$$v31$$x1460-2199$$y2021
000892070 8564_ $$uhttps://juser.fz-juelich.de/record/892070/files/bhab044.pdf
000892070 8564_ $$uhttps://juser.fz-juelich.de/record/892070/files/Pub_.pdf$$yOpenAccess
000892070 8767_ $$8E14470932$$92021-05-12$$d2021-07-14$$ePage charges$$jZahlung erfolgt$$zBelegnr. 1200168922
000892070 8767_ $$8E14470932$$92021-05-12$$d2021-07-14$$eColour charges$$jZahlung erfolgt$$zBelegnr. 1200168922
000892070 909CO $$ooai:juser.fz-juelich.de:892070$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000892070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177058$$aForschungszentrum Jülich$$b0$$kFZJ
000892070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
000892070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b2$$kFZJ
000892070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b3$$kFZJ
000892070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b6$$kFZJ
000892070 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000892070 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000892070 9141_ $$y2021
000892070 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-26
000892070 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000892070 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2019$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892070 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2019$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-26
000892070 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-26$$wger
000892070 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000892070 920__ $$lyes
000892070 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000892070 980__ $$ajournal
000892070 980__ $$aVDB
000892070 980__ $$aUNRESTRICTED
000892070 980__ $$aI:(DE-Juel1)INM-7-20090406
000892070 980__ $$aAPC
000892070 9801_ $$aAPC
000892070 9801_ $$aFullTexts