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Abstract

The recent availability of population-based studies with neuroimaging and behavioral
measurements opens promising perspectives to investigate the relationships between
interindividual variability in brain regions connectivity and behavioral phenotypes.

However, the multivariate nature of connectivity-based prediction model severely limits the
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insight into brain-behavior patterns for neuroscience. To address this issue, we propose a
connectivity-based psychometric prediction framework based on individual regions
connectivity profiles. We first illustrate two main applications. 1) single brain region’s
predictive power for arange of psychometric variables, and 2) single psychometric variable's
predictive power variation across brain region. We compare the patterns of brain-behavior
provided by these approaches to the brain-behavior relationships from activation approaches.
Then, capitalizing on the increased transparency of our approach, we demonstrate how the
influence of various data processing and analyses can directly influence the patterns of brain-
behavior relationships, as well as the unique insight into brain-behavior relationships offered

by this approach.

Keywords: brain-behavior relationships, behavior prediction, human connectome project,

machine learning, resting state functional connectivity
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1. Introduction

The relationships between brain regions and behavioral functions is a fundamental
question for neuroscience. These relationships can be investigated by relating interindividual
variability in brain regions connectivity to interindividual differences in behavioral
performance (that is, to psychometric data). The recent availability of population-based
neuroimaging datasets with extensive psychometric characterization (Van Essen et a. 2013;
Caspers et a. 2014) opens promising perspectives to investigate the relationships between
brain regions' connectivity and behavior. In particular, many studies have shown that
individual profile of functional connectivity (FC) between brain regions can predict
individual scores on psychometric variables, including cognitive measures such as fluid
intelligence, as well as personality traits, such as openness (Finn et al. 2015; Rosenberg et al.
2016; Smith et al. 2016; Noble et al. 2017; Dubois et al. 2018; Li et al. 2019). Given the
potential of these approaches for cognitive and clinical neuroscience, developing a
scientifically valid and useful connectivity-based framework for investigating brain-behavior

relationships is acrucial objective for the neuroimaging community.

In a cognitive and clinical neuroscience framework, not only the prediction
performance matters, but also the neurobiological validity of the model and relatedly, its
interpretability, raising one main issue of the current state of the art. Frequently, researchers
try to interpret the model with some type of post-hoc evauation, looking at the brain
connectivity features (i.e. region-to-region connectivity values) seemingly playing important
roles in the prediction. The relative relevance of the features is often derived from the weights
assigned by the regression algorithms. Nevertheless, since prediction models often enlist
backward (or discriminative) models, such interpretations can be drastically misleading as the
relative magnitude of these weights does not reflect the magnitude of the regions’ association

with the given psychometric variable, and large weights may be assigned to features which

3


https://doi.org/10.1101/2020.01.15.907642
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.907642; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

are actually unrelated to any brain process of interest (Haufe et al. 2014). The difficulty of
interpretations could also be illustrated with the example, shown in figure 1, of average
weights assigned during prediction of fluid intelligence by support vector regression (SVR;
Boser et al. 1992; Cortes and Vapnik 1995) and elastic nets (EN; Zou and Hastie 2005)
respectively. The small number of highlighted connectivity edges suggests that
interpretations based on only these edges could be unrepresentative. The inconsistency of
weight assignment across regression algorithms also suggests the lack of reliability for any
interpretations. To address this issue, we here propose a connectivity-based psychometric
prediction (CBPP) framework based on individual region’s connectivity profile. Such an
approach is performed by evaluating a machine learning model predicting psychometric data
from FC independently for each brain region (see Chen et al. 2020 for a previous application
in classification). The prediction performance of psychometric data of each independent brain
region’s model can then be used as an estimator of the relationship between the region’s

connectivity profile and the measured behavioral function.
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Figure 1. Weights of connectivity features assigned by SVR (left) and EN (right) for
prediction of fluid intelligence, computed on the FIX-processed data from the Human
Connectome Project described in the ‘ Data and preprocessing’ section. Color

represents the average weight value across one run of 10-fold cross-validation.

The relationship between brain functional connectivity and behavior is multivariate
with a level of complexity that prevents any one-to-one mapping between brain region and
behavioral function (Genon et a. 2018). Many “global” (whole-brain connectivity or
network-based connectivity) approaches aim to account for this complexity in the prediction
of behavior (Kong et al. 2019; Kashyap et al. 2019; Pervaiz et a. 2020). A local approach,
while obviously simplifying the complexity of brain function (Horien et al. 2019), offers
additional insights into individual brain regions of interest. Such insights are necessary for a
progressive unraveling of the brain-behavior relationship and hence the investigations of the
neurobiological validity of the prediction. For instance, if parcels in visual areas are the best
at predicting abstract reasoning performance, one could expect that the model is partly driven
by some confounding factors such as the posterior brain shape. Furthermore, from such
insights, a systematic examination of the influence of different factors on the prediction
model can be conducted. One can hence for instance, investigate how controlling for brain
shape estimators influences the pattern of relationships between brain regions and behavioral
variables. Finaly, from amore clinical standpoint, a region-based approach can offer specific
insights into patterns of brain regions dysfunction and behaviora symptoms. In sum, a
region-based approach brings a complementary insight to currently used whole-brain and
network-based approaches by the transparency it offers and hence provides a new insight into

brain-behavior relationships.
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In the current study we first examined the relationships between brain region
connectivity and psychometric variables by looking at the prediction profile across
psychometric variables of a given region, followed by depicting, for a given psychometric
score, the profile of distribution of prediction performance across brain regions. Then, in
order to better understand how methodological choices can affect our study of brain-behavior
relationships, we illustrated the influence of confounds that are not systematically taken into
account in the literature, such as brain size. We aso examined whether sophisticated
denoising of resting-state functional connectivity (RSFC) provides a clarified picture of
brain-behavior patterns or rather appears to remove relevant signal. Lastly, we compared our
approach with a post-hoc evaluation of the nodes or edges playing arole in the predictions (as
shown in figure 1). Following this first demonstration of the insight that our approach can

bring, we will discuss our results and the related open challenges.

2. Materials and M ethods

2.1. Data and preprocessing

In this study, for extensive evaluation on high quality data, the 1200 Subjects Data
Release of the Human Connectome Project (HCP) data was used (Van Essen et al. 2013).
Subjects were young healthy adults (aged 22-37), from families with twins and non-twin
siblings. Imaging data were acquired using a customized Siemens 3T Skyra. Each subject
visited in two consecutive days, during each of which two rs-fMRI runs were acquired using
different phase encodings, left-right and right-left. Each run is 1200 frames (14.4 min) in
length, with a repetition time (TR) of 720 ms. We only considered subjects with all 4 runs

completed.

All the raw rsfMRI data from HCP were preprocessed by the HCP Minimal

Processing Pipelines (Glasser et a. 2013), which include motion correction, gradient
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nonlinearity distortion correction, EPI distortion correction, coregistration to T1-weighted
images and normalization to the MNI152 space. We refer to the resulting data as “minimally
processed”. Further cleaning of noise in HCP data was done using ICA-FIX. Components
were first identified using independent component analysis (ICA); a classifier (FIX) trained
on HCP data was then applied to remove artifactual components (Smith et al. 2013; Salimi-
Khorshidi et al. 2014; Griffanti et al. 2014). We refer to these data as “FIX”. To further
investigate the impact of globa signal regression (GSR), we regressed the cortical global
signal, which is the average signal across all cortical vertices, and its temporal derivative
(Power et al. 2018; Li et a. 2019) from the FIX data. These data are then referred to as
“FIX+GSR”. We obtained surface data in the fsLR space for these three types of
preprocessing strategies (N=928 for ‘minimally processed’, N=923 for ‘FIX’ and
‘FIX+GSR’data). For the volumetric data, we only used the existing FIX denoised data (N =
931). Additionally, we applied nuisance regression to control for the 24 motion parameters,
white matter (WM) and cerebrospinal fluid (CSF) signals, and their derivatives. We refer to

these data as “ FIX+WM/CSF".

For most subjects of the HCP cohort, alarge number of psychological measures were
collected through tests and questionnaires across a broad range of psychological domains
including sensory, motor, cognition, emotion, affect and personality. Additionally, task
performance scores were aso available from task-fMRI sessions. We selected 40
representative psychometric variables after inspecting all variables distribution for roughly

normal distribution. See Table S1 for the complete list of variables selection.

Psychometric data are typically related to demographical factors such as age and
gender. In addition, the relationships between psychometric and neuroimaging data can be
partially mediated by factors such as head size, handedness and seasonality. To ensure strict

control on the confounding effects of these latter variables, we not only regressed out the first
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level effect of brain size, sex and age but also included the secondary term of age and the
interaction between age and sex, in line with the HCP MegaTrawl analysis (Smith et al.
2016). Accordingly, our ‘standard’ confound controlling method involved regressing out 9
confounding variables from the psychometric variables: sex (Gender), age (Age in_Yrs),
age’, sex*age, sex*age’, handedness (Handedness), brain size (FS BrainSeg Vol),

intracranial volume (ICV; FS_IntraCranial_Vol) and acquisition quarter (Acquisition).

Differing from some previous work, we did not include motion-related confounding
variables, such as framewise displacement (FD) and DVARS. First, the effects of these
confounds on the resting-state fMRI data should be largely reduced following motion
correction and FIX denoising. Second, the correlation between these confounds and the
psychometric variables are rather low, especially after controlling for the above 9
confounding variables (see Table S2 and S3). Finally, from a conceptua standpoint, while it
can be assumed that motion-related effects could influence association between whole-brain
patterns and psychometric data, there is no reason to expect head motion effect in specific
brain regions that would hence specifically affect the predictive pattern of these regions.
Accordingly, we did not observe any mgor effect of these confounds on parcel-wise
psychometric profiles (see a comparison in figure S2). As aresult, FD and DVARS were not

included as confounding variables, since they would not affect our conclusions.

2.2. Preliminary evaluation.

Preliminary to the development of our region-wise prediction approach, we performed
an extensive preliminary assessment of the general CBPP framework based on a global
approach, that is, based on whole-brain connectivity information. The general workflow of

the CBPP framework follows standard protocols (Shen et al. 2017) and isillustrated in Figure
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S1. At each step of the framework, multiple approaches and various parameter settings could
be considered. In our evaluation, we mainly considered previously used approaches,
summarized in Table S2. Figure 2 shows the different approaches considered at each step in
our implementation of whole-brain CBPP. In total, 96 combinations of approaches were
evaluated with ‘standard’ confound controlling approach. We used the surface data from
HCP, including all 3 different preprocessing strategies (‘minimally processed’, ‘FIX' and

‘FIX+GSR’).

Prepracessing & denaising

HCP minimal mminimal + ICA-FIX FIX + global
preprocessing (FIX"™ signal regression
pipeline ("minimal") ("FIX+GSR")
Parcellation (granularity)
100-parcel 200-parcel 300-parcel 400-parcel

~ -

Connectivity computation

Partial correlation with L2

Pearson correlation regularization

N,

Adjustment for confounds

sex + brain size

standard no confound
confounds

< ~

Regression methods

Multiple linear | Linear support
regression |vector regression
(MLR) (SVR)

Elaslicnel  Ridye regression
(EN) (RR)

Figure 2. Approaches considered for each step in the CBPP framework.

CBPP studies usually capitalizes on whole-brain connectivity using atlases (brain
parcellation) to summarize voxels data, by computing a mean time series for each parcel by
averaging time series of all the vertices (or voxels) within that parcel. In our implementation,

the Schaefer atlas (Schaefer et a. 2018) was utilized at 4 different granularity levels, with
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100 parcels, 200 parcels, 300 parcels and 400 parcels respectively. The most commonly used
functional atlases contain 200 to 400 parcels (Shen et al. 2013; Joliot et al. 2015; Gordon et
a. 2016; Glasser et a. 2016). Nonetheless, in the recent HCP MegaTrawl, the highest
psychometric prediction accuracy was achieved at lower dimensionality, with dimension d =
50, when partial correlation (with L2 regularization) was used for computing connectivity

(Smith et al. 2016). Therefore, we used all available granularity up to 400-parcel level.

Functional connectivity is typically computed based on Pearson correlation; however,
partial correlation is considered by several authors as more likely to reflect direct connections
(Bijsterbosch et al. 2017; Lim et a. 2019). When using atlases, functional connectivity
strengths are computed as the correlation coefficient between each pair of parcel’s average
time series resulting in, for example, a 400x400 FC matrix at 400-parcel granularity. In our
implementation, the Pearson correlation matrices were computed using the Matlab’s corrcoef
function. The partial correlation matrices were computed using FSLNets' nets netmats
function (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), with the default regularization
coefficient for L2-norm ridge regression. The L2 regularization adds a quadratic term of the
regression weights to the cost function, hence adding a constraint to the optimization. Such
constraints help to prevent overfitting by shifting the best-fit solution on training set by an
amount independent of the data. Since 4 runs were acquired for each HCP subject, the
average connectivity matrix for each subject across runs was used as input features for the

supervised learning model.

Commonly in literature, feature selection can be done before the prediction step to
reduce computation time (Smith et a. 2016; Shen et al. 2017; Dubois et a. 2018; Kashyap et
al. 2019). One popular way to do so is to examine Pearson correlation coefficients between
elements of the connectivity matrix (i.e. edges) and the psychometric variables to predict and

to select either connectivity elements with significant correlation (p < 0.01 or p < 0.05) or the
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top 50% of al the connectivity elements (i.e. 2475, 9950, 22425 and 39900 elements at 100-
parcel, 200-parce, 300-parcel, and 400-parcel granularity respectively) as features for the
subsequent prediction step. In our implementation, we selected the top 50% of all
connectivity elements as features for the more computationally expensive algorithm, EN. As
multiple linear regression (MLR) relies on least square solutions and was mostly used in
previous studies for univariate prediction, it could not be expected to deal with higher feature
dimensionality. Therefore, we only selected the top 500 of all connectivity elements as
features for MLR in order to prevent overfitting. No feature selection was performed for
linear SVR or ridge regression (RR), since the computation was not particularly expensive

and, importantly, no overfitting was observed.

Finaly, we focused on a selection of linear regression techniques popular in the
neuroscience field: multiple linear regression (Matlab’s regress function; Chatterjee and Hadi
1986), linear SVR, EN, and RR. For each combination of approaches, we performed 10
repeats of 10-fold cross-validation. In each repeat, the subjects were divided into 10 folds.
For each test fold, the regression model was estimated using the remaining 9 training folds.
The corresponding prediction accuracies were then computed by applying the model to the
test fold. The final prediction accuracy was measured as 1) the average Pearson correlation
2) inverse of the average normalized root mean squared deviation (nRMSD; Pineiro et al.
2008; Dubois et al. 2018) between the predicted and observed psychometric values, across all

test set folds and all repeats. In particular, the inversed nRM SD values were calculated as.

Z?:1(yi - y)z
=1 — 3)?

(inversed) nRMSD = \/

For all combinations of approaches tested in the preliminary evaluation, the difference
in performance between combinations were tested with the corrected resampled t-test

(Nadeau and Bengio 2003; Bouckaert and Frank 2004), which accounts for the dependency
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between test folds across repeats. The results were corrected for multiple comparisons using

false discovery rate (FDR; Benjamini & Hochberg 1995) of g < 0.05.

We note that the comparisons between the different regression agorithms may not be
generalizable to different frameworks and fully objective, since different feature selection
methods were utilized for the different algorithms. These comparisons therefore do not
provide general rankings or guidelines for the community. They here serve as a preliminary

optimization of the methods on which our region-based framework builds.

2.3. Psychometric prediction

For the prediction step, linear SYR and RR were implemented using Matlab's
fitrlinear, while EN was implemented using the gimnet package for Matlab (Qian et al. 2013).
We note that LASSO (least absolute shrinkage and selection operator) is aso widely used in
neuroscience studies. However, since EN was used in previous CBPP studies (Smith et al.
2016; Kashyap et al. 2019) and could be considered as an optimal combination of ridge
regression and LASSO, harnessing both the high prediction performance and sparse

representation (Zou and Hastie 2005), we here focused on ridge regression and EN.

Psychometric prediction is typically performed by training and testing regression
agorithms through cross-validation. For each combination of approaches, we performed 10
repeats of 10-fold cross-validation. As the HCP cohort consists of families of siblings, the
cross-validation folds were generated when ensuring that family members were always kept
within the same fold, as done in previous studies (Kong et al. 2019; Li et al. 2019). Using
Matlab’s regress function, the 9 confounding variables were regressed out from the training
set from 9 folds, the same regression coefficients were used to remove effects of these

variables from the test set in the remaining fold. Similarly, feature selection for the
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preliminary evaluation was performed based on the training data only; the same selected

features were used in the test fold.

The hyperparameter, epsilon, for linear SVR was set to the default value. As the
default value is dependent on data variance and usually found to be the most optimal value
during our preliminary analysis, our final implementation of linear SVR did not include
hyperparameter tuning. Overal, our implementation of linear SVR can be seen as a smpler
linear regression model, in comparison to EN which would rather require hyperparameter
tuning. Hyperparameter tuning for EN was done in two steps. During each cross-validation
run, we first fixed the alpha value, which determines the compromise between ridge and
lasso, while tuning the lambda value, which determines the degree of regularization. To do
so, a 10-fold inner-loop cross-validation was carried out using 8 of the training folds. The
best alpha value was then chosen according to the prediction performance on the last training
fold. For RR, the ridge coefficient was chosen using a similar procedure for EN, by
designating one training fold to be the inner validation fold. The coefficient value giving rise

to the best prediction performance on the inner validation fold was chosen.

2.4. Region-based CBPP

To directly investigate the neurobiological validity and hence interpretability of the
brain-behavior patterns, we propose a region-based (or parcel-wise) CBPP framework. The
procedure of region-based psychometric prediction was overall the same as that shown in
Figure S1 and Figure 2. The main difference is that the input features become an individual
brain region or parcel’s connectivity profile, which is represented by a vector of FC vaues

between the region and all other regions.
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For easy interpretation, we focused on combinations using Pearson correlation (see
Discussion). Based on the preliminary evaluation, optimal performance could be achieved
using any combinations with FIX or FIX+GSR data, SVR or EN, at 300-parcel granularity.
Here we focused on the FIX-Pearson-SVR combination at 300-parcel granularity with the
‘standard’ confound controlling approach, to facilitate the assessment of denoising strategies

|ater.

We first present the region-based CBPP from the brain region’s perspective, in which
a psychometric prediction profile could be established for each brain region or parcel,
consisting of the prediction accuracies of the 40 psychometric variables using the
connectivity profile of that parcel. We examined four pairs of parcels at the cortical surfaces
that were identified in the surface-based Shaefer atlas, located in the primary visual cortex,
the premotor cortex, the supramarginal gyrus and the Broca region. Additionaly, we
examined parcels in the hippocampus hence using volumetric data and an independent atlas
derived from independent volumetric RSFC data (AICHA atlas which consists of 300 cortical
parcels and 84 subcortical parcels, see Joliot et a. 2015). We selected well-studied regions
from different functional networks such that their profiles can be compared with the brain
mapping literature. This additional analysis allows the comparison of the psychometric
profile of the volumetric parcels with their behavioral profile based on activation data (which

typically exists in volumetric space).

We then present the psychometric variable's perspective, in which the prediction
accuracies distribution across parcels could be visualized for each psychometric variable. We
selected variables that are assumed to reflect overall crystallized cognition and an intensively
study specific domain of cognition (working memory). For comparison, we included one
variable pertaining to a further specific paradigm condition within that domain (working

memory for faces). Finally, we added one variable related to motor functions (strength).
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Finaly, to illustrate the issue of interpretation by relating connectivity feature
relevance to weights assigned by regression algorithms, we obtained the weight assignments
for the same psychometric variables used in illustrating the psychometric variable's
perspective. To simulate a global approach, weights were retrieved for all region-to-region
connectivity edges using whole-brain CBPP used in our preliminary evaluation. For each
parcel, its regression weight can be represented by the average weight assigned across al its
connection with other parcels. Essentially, a highly relevant connectivity edge would increase
the regression weights of both parcels in the connection. These regression weights were
further averaged across a 10-fold cross-validation loop. The regression weights distributions

can then be compared to the prediction accuracies distributions.

For region-based CBPP, no feature selection needs to be done since the number of
features is low. For establishing the psychometric profiles, permutation testing was
performed by repeating 10-fold cross-validation 1000 times while shuffling the psychometric
variables. The final prediction accuracies across the 40 psychometric variables were corrected
for multiple comparisons using false discovery rate (FDR; Benjamini & Hochberg 1995) of g

<0.05.

2.5. Effects of denoising and confounds

A potential application of the region-based CBPP framework is to explore the
influence of specific parameters in the prediction procedure on the validity of the results.

Here we focus on investigating the effects of denoising and confound removal.

To explore the influence of denoising on the validity of the brain-behavior
associations, we compared parcel-wise prediction accuracy between minimal preprocessing

and FIX denoising data. The overall accuracy difference could be visually discerned, while
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the difference in variance of prediction accuracies was tested using the Levene' stest (Levene
1960). To further investigate if FIX denoising contributes to the differentiation between
parcels' psychometric profiles or psychometric tests’ prediction accuracy distribution maps,
we computed the Euclidean distance between 1) the psychometric profiles and 2) accuracy

distribution maps for minimally processed data and for FIX data separately.

To investigate the impact of confounds, we implemented the combination of FIX data
followed by SVR using ‘no confound’ approach and ‘sex + brain size confounds'. In the ‘no
confound’ approach, the confound controlling step was completely skipped. In the
preliminary anaysis, when refraining from confounds removal, we found strikingly high
prediction accuracy for strength, with further evidence that sex, brain size and intracranial
volume were highly correlated with strength (Pearson r = 0.77, 0.54, 0.51 respectively). To
further investigate whether these confounds account for the inflated prediction performance,

in the ‘sex + brain size confounds’ approach, only these confounds were regressed out.

3. Reaults

3.1. Preiminary evaluation

Figure 3 and S3 show the whole-brain CBPP results from all 92 different
combinations of approaches. Each point on the line plot shows the average prediction
accuracy (Pearson correlation and inverted NnRM SD respectively) across the 40 psychometric
variables, for a specific combination of approaches. Numerically, the highest average
correlation accuracy was achieved by the minimal-partial-SVR combination at 300-parcel
granularity, followed by FIX+GSR-partial-SVR and FIX-partia-SVR combination at 300-
parcel granularities. The highest average nRM SD accuracy was achieved by FIX-Pearson-EN
and FIX+GSR-Pearson-EN combinations. More detailed comparison of approaches including

statistical test results can be found in Supplemental materials.
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Overal, machine learning-based denoising (FIX) and a parcellation granularity of
300-parcel led to the most optima combinations. Following FIX or FIX+GSR denoising and
300-parcel granularity, similar prediction performance could be achieved using any
connectivity computation method or regression method (except MLR which led to lower

performance).
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Figure 3. Average prediction accuracy (Pearson correlation between predicted and observed values)
across the 40 psychometric variables for each combination of approachesin whole-brain
CBPP. Error bars represent the 95% confidence interval across psychometric variables. The
columns show combinations using minimally processed, FIX and FIX+GSR data respectively;

the rows show combinationsusing MLR, SVR, EN and RR respectively. Dark lines represent
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combinations using Pearson correlation, while light grey lines represent combinations using

partial correlation.

3.2. Brain regions’ psychometric profiles

Figures 4 to 7 show the psychometric profiles of 4 pairs of surface parcels,
corresponding to parcels in the primary visual cortex, premotor cortex, supramarginal gyrus
and Broca region. Overall, the selected parcels showed similar psychometric profiles across
hemispheres, but distinct profiles across parcel locations. Psychometric variables describing
general cognitive abilities tended to be well predicted across combinations of approaches in
whole-brain CBPP and, relatedly, across parcels in parcel-wise CBPP. For example, the total
cognition composite score was the fourth best predicted across combinations of approaches

on average and among the best predicted variables for al the 4 selected parcels.

We note that the two prediction performance measures, Pearson correlation and
inverted NnRMSD, converge on highlighting similar variables. However, discrepancies can
aso be observed as the nRMSD measure appears to be much stricter than the correlation
measure. Therefore, we suggest to focus on patterns for which convergence across measures
are observed as these might be more reliable than any pattern yielded by a single prediction

performance measure.

When analyzing the brain regions’ psychometric profiles, we focus on prediction
accuracy comparisons between different psychometric variables for each parcel separately.
While most of the well predicted psychometric variables for parcels in the primary visual
cortex were aso well predicted by the connectivity profiles of many other brain regions,
processing speed (Proc Speed) was predicted with relatively high accuracy only in the
primary visual cortex parcels. In contrast, FC patterns of the primary visual cortex parcels

showed nearly no predictive power for psychometric variables in the emotion domain. In
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comparison to other parcels, the premotor cortex parcels showed overal low prediction
accuracies for most psychometric variables. The parcels in the supramarginal gyrus showed
relatively high predictive power in most cognition-related variables, including total cognition
composite score, fluid intelligence (Fluid Int), working memory performance, picture
vocabulary (Pic Vocab) and crystallized cognition composite score (Crystal Comp). Finaly,
the parcels in the Broca region showed relatively higher prediction power for language-
related measures, cognition composite scores and working memory performance.
Interestingly, the right parcel showed lower prediction power for language task accuracy
(Lang task) than the left, but higher prediction power for working memory abilities. Figure 8
shows the psychometric profiles of a pair of parcels in the anterior hippocampus. Across
hemispheres, the two parcels showed similar psychometric profiles. Again, both parcels
showed relatively high predictive power for al cognition composite scores, processing speed,
reading and picture vocabulary, cognitive flexibility (Card Sort) and endurance. In addition,
the left anterior hippocampus showed relatively higher prediction accuracies in extraversion
(NEOFAC-E), while the right parcel showed relatively higher prediction accuracies in
relational task performance (Rel Acc). A behaviora profiling of the hippocampus parcels
across activation studies of the BrainMap database (Fox and Lancaster 2002; Laird et al.
2005), shown in figure $4, revealed that these parcels are consistently activated for emotion,
memory, face processing and passive viewing paradigms, hence partly converging with their

psychometric profile based on CBPP.

Panel B in figures 4 to 8 shows the comparison of parcel-specific and whole-brain
prediction accuracy, for psychometric variables where both the Pearson correlation and
NRMSD measures showed statistical significance. For almost al parcels, the parcel-wise
accuracies for the 3 cognition composite scores were about half as much as the corresponding

whole-brain accuracies. Similar ratios were also observed for oral reading and picture
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vocabulary when their parcel-wise accuracies were selected for comparison. On the other
hand, several psychometric variables showed at least comparable parcel-wise accuracies to
the whole-brain accuracies. For the parcels in the primary visual cortex, such variables
include processing speed, working memory performance, cognitive flexibility and inhibitory
control (Flanker). For the parcels in the premotor cortex, these include working memory
performance for face material for the left hemisphere. For the parcels in the supramarginal
gyrus, these include working memory performance for both hemispheres, as well as cognitive
flexibility for the left hemisphere. For the parcels in the Broca region, these include language
task for the left hemisphere, as well as working memory for the right hemisphere. For the
parcels in the anterior hippocampus, these include cognitive flexibility for both hemispheres

and extraversion for the left hemisphere.
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Figure 4. (A) Psychometric profiles for pairs of parcelsin primary visual cortex in left and right
hemi spheres respectively, using FIX-Pearson-SV R combination at 300-parcel granularity,
based on Pearson correlation accuracy. Psychometric variables for which the n(RM SD
accuracy isalso significant are highlighted with a bold font. Gray filled contour shows whole-

brain prediction profile, while blue contour shows parcel-wise prediction profile. (B)
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Comparison of parcel-specific (blue) and whole-brain (gray) accuracies for psychometric

variables for which both the Pearson and nRM SD accuracies are significant.
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Figure 5. (A) Psychometric profilesfor pairs of parcelsin premotor cortex in left and right
hemispheres respectively, using FIX-Pearson-SV R combination at 300-parcel granularity,
based on Pearson correlation accuracy. Psychometric variables for which the n(RM SD
accuracy is also significant are highlighted with a bold font. Gray filled contour shows whole-
brain prediction profile, while blue contour shows parcel-wise prediction profile. (B)
Comparison of parcel-specific (blue) and whole-brain (gray) accuracies for psychometric

variables for which both the Pearson and nRM SD accuracies are significant.
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Figure 6. Psychometric profiles for the pair of parcelsin supramargina gyrus in left and right
hemispheres respectively, using FIX-Pearson-SV R combination at 300-parcel granularity,

based on Pearson correlation accuracy. Psychometric variables for which the n(RM SD
accuracy isalso significant are highlighted with a bold font. Gray filled contour shows whole-

brain prediction profile, while blue contour shows parcel-wise prediction profile. (B)
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Comparison of parcel-specific (blue) and whole-brain (gray) accuracies for psychometric

variables for which both the Pearson and nRM SD accuracies are significant.
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Figure 7. Psychometric profiles for the pair of parcelsin Brocaregion in left and right hemispheres
respectively, using FIX-Pearson-SV R combination at 300-parcel granularity, based on

Pearson correlation accuracy. Psychometric variables for which the nRMSD accuracy is also
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significant are highlighted with a bold font. Gray filled contour shows whole-brain prediction
profile, while blue contour shows parcel-wise prediction profile. (B) Comparison of parcel-
specific (blue) and whole-brain (gray) accuracies for psychometric variables for which both

the Pearson and nRM SD accuracies are significant.

25


https://doi.org/10.1101/2020.01.15.907642
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.907642; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(A) ui

(B) anterior
AN

Anterior hippocampus

(right} A4 (left)
% ° o posterior % .
SN NE R RN
i g SN2
= [} 3 [)
Y w B2 gé"‘gd’f&, ‘*34*'6.?“9% — f‘.
% & %
%ﬁ o5 ?s;'{““‘} % a2 J;f;rs\eb
¢ ¥ o
% [ wﬁﬂ‘w %% o P‘“‘;.\P‘L
Fhurg P aurnst iy g gros®
Total Cony, \ et EFF Totai Gopy, . ol £
Crysial Comp Emot Supp Crystal Comp Ema: Supp
Pluid ComP Ule Soppes Fukd Com® Life Supigy
o Emgy oy O E’"Of X
oot a %W%R"Gas gesy %w ’heug
o 0”#;- %y +« YR R
*« 4 %, @ %,
eﬂ',f‘é’ -»'%‘;%?%4 NG m‘%%‘*- %,
F .;'!Eg-gg%. 5 7 \?F‘r‘gggg-.;‘aﬁvﬁ N
v & £ 2 g % c § 23 % Y
§ ;¢ S
& N
pnsansorimotor  INCognition (general) Cognition (specific) Emoation / Socioaflective Il Personality

%

(C)ma- I

iz
§ 8 9

g

113 o 220 P 1)

g
&

Whele-brain I Parcsk-speciiic

26


https://doi.org/10.1101/2020.01.15.907642
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.907642; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Figure 8. (A) The AICHA atlas (B) Psychometric profiles for the pair of parcelsin anterior
hippocampus in right (pink parcel) and left (blue parcel) hemispheres respectively, using
FI X+WM/CSF-Pearson-SV R combination, based on Pearson correlation accuracy.
Psychometric variables for which the nRMSD accuracy is aso significant are highlighted with
abold font. Gray filled contour shows whole-brain prediction profile, while blue contour
shows parcel-wise prediction profile. (B) Comparison of parcel-specific (blue) and whole-
brain (gray) accuraciesfor psychometric variablesfor which both the Pearson and nRMSD

accuracies are significant.

3.3. Psychometric variables' prediction accuracy distributions

From the psychometric variables’ perspective, we present the prediction accuracies
distribution across parcels. Figure 9a to 9d show the prediction accuracy distributions and
histograms across the brain for 4 selected psychometric variables, using FIX-Pearson-SVR
combination at 300-parcel granularity based on Pearson correlation accuracy. Figure S5
shows the prediction accuracy and histograms for the same variables and combinations based
on NRMSD accuracy. Across the brain, prediction accuracies were generaly lower for

strength and higher for crystallized cognition composite score.

When analyzing the psychometric variables’ prediction accuracy distributions, we
focus on prediction accuracy comparisons between different parcels for each psychometric
variable separately. For strength prediction, the best performing parcel was the parcel in the
ventral postcentral sulcus in the left hemisphere. For crystallized cognition composite score,
most parcels achieved good performance. For working memory task overall accuracy (2-back
Acc), the best performing parcels were those in the cingulate cortex, parietal cortex,
supramarginal gyrus, lateral frontal cortex and anterior insula. For working memory task

performance specifically for faces (2-back Acc Face), the distribution was similar to that of
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the working memory task overall accuracy; in addition, parcels in the inferior temporal cortex
and the calcarine sulcus achieved good performance in predicting working memory abilities

for faces.

Figure 9e and 9f shows the HCP group activation maps for working memory task
(ttMRI_WM_2BK-0BK) and social task (tfnri_SOCIAL_TOM-RANDOM), where activations
are shown in absolute values. Overall, the pattern in the prediction accuracy distribution for
working memory overall accuracy is more similar to the working memory activation pattern,
than with the social task activation pattern. In particular, high signal changes in working
memory task and high prediction accuracies were both found in the anterior cingulate cortex,
parietal cortex, lateral frontal cortex and anterior insula. In contrast, high signal changes in
social task were found across the ventral network including the temporal lobe, where

prediction accuracies were generally low for working memory performance.

Figures S6 to S9 shows the Pearson correlation accuracy distribution using FIX-
Pearson-SVR combinations across all 4 granularities, for the 4 selected psychometric
variables respectively. By visual inspection, the overall distribution patterns were similar
across different granularities. Nevertheless, within broad functional territories, the relatively
higher predictive power of specific parcels (hence subregions) appeared when reaching
granularities such as 200-parcels and 300-parcels, which could reflect relatively more specific

brain region-behavior relationships captured at higher granularities.
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Figure 9. Top: Prediction accuracy distribution using FI X -Pearson-SV R combination at 300-parcel

granularity of the 4 selected psychometric variables: (@) strength (Strength) (b) crystallized
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cognition composite score (Crystal Comp) (¢) working memory task overall accuracy (2-back
Acc) (d) working memory task face condition accuracy (2-back Acc Face). Each row shows
the distribution overlayed on the fsLR surface in lateral and medial views of the left and right
hemispheres, respectively. Color represents the magnitude of the Pearson correlation
coefficients between predicted and observed values. Accuracies which were not statistically
significant are shown in gray. The rightmost column shows the histogram of prediction
accuracies for each variable respectively. Bottom: Absolute values of HCP group activation
maps of (e) working memory task (2-back — 0-back) (f) social task (theory of mind — random),
with overlay of Schaefer atlas at 300-parcel granularity. Each row shows the activation map
overlayed on the fsLR surface in lateral and medial views of the left and right hemispheres,
respectively. Color represents the absolute value of the activation difference in the maps. The
maps were thresholded to show value in the range between 0.2 and 1 (roughly the 50" and 99"

percentile respectively). Vertices outside the threshold range were shown in gray.

3.4. Prediction accuracy distribution vs. regression weights

Figure 10a to 10d shows the absolute mean (top rows) of each parcel’s regression
weights for the 4 selected psychometric variables across cross-validation. In comparison to
the prediction accuracy distributions (Figure 9), the only obvious similarity is the high
relevance of a left middle frontal parcel and some right cingulate parcels for crystalized
cognition composite score. While it might be possible to find a number of connections with
high regression weights assigned across cross-validation, it was often not possible to group
them in a meaningful manner. As illustrated in Figure 10, the average regression weights for
aparcel isat most about 0.04 (for a whole-brain prediction model that itself explains only 1%
to 10% of the variance in the psychometric variables). Consequently, it would not be sound to
clam that any parcel was found to be importantly related to the predicted psychometric

variable. Furthermore, the distribution of mean regression weights suffers from a lack of

30


https://doi.org/10.1101/2020.01.15.907642
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.907642; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

smoothness and hemispheric similarity, questioning its neurobiological validity. In particular,
the Pearson correlations of regression weights across parcels between hemispheres were not
dtatistically significant (Student’s t test with alpha < 0.05). On the other hand, the Pearson
correlations of region-wise prediction accuracies between hemispheres were all significant (r

=0.25, 0.20, 0.34 and 0.48 for the four psychometric variables respectively, all p < 0.01).

Mean regression weight

Figure 10. Assessing parcels' relevance by regression weights using FIX-Pearson-SVR combination
a 300-parcel granularity for the 4 selected psychometric variables: (a) strength (Strength) (b)
crystallized cognition composite score (Crystal Comp) (c) working memory task overall
accuracy (2-back Acc) (d) working memory task face condition accuracy (2-back Acc Face).
Each row shows the activation map overlayed on the fsLR surface in lateral and medial views
of the left and right hemispheres, respectively. Color represents the average weight value

assigned across cross-validation. Values close to zero were shown in gray.
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3.5. Effects of denoising

Figure 11 shows the prediction accuracy distribution and histogram of parcel-wise
CBPP across the brain for 4 selected psychometric variables, using minimal-Pearson-SVR
combination a 300-parcel granularity, based on Pearson correlation accuracy. Similarly,
figure S10 shows the prediction accuracy distribution and histograms based on nRMSD
accuracy. Overall, the prediction accuracies were lower compared to those using FIX data.
Furthermore, the variance of prediction accuracies across parcels were significantly lower for
minimally processed data than for FIX data, for the strength variable (Levene'stest p < 0.01
for both Pearson and nRMSD accuracies; Levene 1960), suggesting that parcels were more
differentiated after FIX denoising. For the Euclidean distance comparison, in all cases, the
Euclidean distances were significantly larger following FIX denoising than following
minimal processing (p < 0.0001), suggesting that both psychometric profiles of different
parcels and prediction accuracy distributions for different psychometric variables were more

dissimilar when FIX denoising was used.

32


https://doi.org/10.1101/2020.01.15.907642
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.15.907642; this version posted January 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

W 0 oo 01 000 QE 02 6
ACCuracy (Fearson)

r/',\\

A -~
O N N0 N1 0Is 05 NI oA

Accuracy (Pearson}

i S

I
Al
) \
/ N
/’ \\
a0 [LC IS N A O+ A i B B
Accuracy (Pearson}

Accuracy {Pearson}

Figure 11. Prediction accuracy distribution using minimal-Pearson-SV R combination at 300-parcel
granularity of the 4 selected psychometric variables: (a) strength (Strength) (b) crystallized
cognition composite score (Crystal Comp) (¢) working memory task overall accuracy (2-back
Acc) (d) working memory task face condition accuracy (2-back Acc Face). Each row shows
the activation map overlayed on the fsLR surface in lateral and medial views of the left and
right hemispheres, respectively. Color represents the magnitude of the Pearson correlation
coefficients between predicted and observed values. Accuracies which were not statistically
significant are shown in gray. The rightmost column shows the histogram of prediction

accuracies for each variable respectively.

3.6. Effects of confounds
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Figure 12 shows the ‘no confound’ and ‘sex + brain size confounds’ prediction results
for pairs of parcels in the supramarginal gyrus and Broca region respectively. When the ‘no
confound’ approach was used, extremely high prediction accuracies for strength were
observed, even though both regions are mainly cognition-related. This suggests that not
controlling for confounding variables (such as brain size) could undermine the interpretability
of parcel-wise CBPP. Our standard regression approach appeared to greatly neutralize such
aberrant prediction performance, while simply regressing out sex and brain volume-related

confounds had asimilar effect.
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Figure 12. Psychometric profiles for pairs of parcelsin (a) Supramarginal gyrus (b) Brocaregion in

left and right hemispheres respectively, using FIX-Pearson-SV R combination at 300-parcel

granularity with ‘no confound’ (left) and ‘sex + brain size confounds’ (right) approach. Gray
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filled contour shows whole-brain prediction profile, while blue contour shows parcel-wise

prediction profile

4. Discussion

To develop an optimal framework of connectivity-based prediction of psychometric
variables (CBPP) for cognitive neuroscience, we first evaluated the effects of different
approaches and parameters that have been used in whole brain or network-based approach in
previous studies. Overall, our results demonstrated the relevance of sophisticated denoising
approaches for resting fMRI data, as well as the good performance of standard regression-
based prediction algorithms. Capitalizing on this preliminary investigation, we then
demonstrate the validity of our region-wise CBPP approach, in terms of single brain region’s
psychometric profile as well as single psychometric variable’'s prediction accuracy

distribution.

Our findings show the benefit of sophisticated machine learning-based denoising
(here FIX denoising), not only at the quantitative level on prediction performance but also at
the qualitative level for the study of brain-behavior relationships. We can note however that,
while prediction accuracies were significantly lower for minimally processed data in
comparison to FIX and FIX+GSR data when Pearson correlation was used, the three different
preprocessing approaches were comparable when partial correlation was used. Considering
that the computation of partial correlation between two parcels, to a certain extent, implies
the neutralization of common variance, it is possible that using partial correlation potentialy
removes noise and artifacts affecting severa parcels. As a result, smilar denoising effects
could be achieved by computing partial correlation and by FIX (or FIX+GSR) preprocessing

(also see figure S11). Nevertheless, our supplementary investigation (see figure S12) suggests
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that partial correlation aggressively alters the complex pattern of connectivity fingerprint of
brain region (i.e. parcels) by removing shared variance across regions. In line with this view,
our preliminary analysis (see figure S11) revealed that the residual connectivity fingerprint of
the region following partia correlation does not lead to distinguishable psychometric profiles
for different parcels. Conseguently, these combinations were excluded from the final
analysis. At the current stage of knowledge, we can only assume that the common variance
removed in partial correlation computation contains variance of interest (e.g. common
variance of parcels in the same functional network) that importantly contributes to the
region's FC fingerprint. Therefore, while using partial correlation may improve overal
prediction performance, it may not provide the same level of interpretability as models using

Pearson correlation gives when using region-wise predictions.

Our qualitative examination of the psychometric prediction profile for each parcel
generally matched well with our expectations based on brain mapping literature. Hence, the
parcels in primary visual cortex showed predictive power for processing speed performance.
This pattern could be explained by the role of these regions in visual information processing
and relaying (Fabre-Thorpe et a. 2001; Sharpee et a. 2006). The performance at two higher
cognitive variables (executive function type: Card Sort and Flanker) were aso relatively well
predicted from primary visual cortex’s FC patterns, which could potentially be explained by
the role of visual processing speed and accuracy in the performance. The parcel in |eft
premotor cortex showed predictive power for working memory performance for face
material, which is in line with the premotor cortex’s engagement in working memory and
face processing paradigms (Chan and Downing 2011; Balconi and Bortolotti 2013; Genon et
al. 2017, 2018). The parcels in supramargina gyrus showed predictive power across a wide
range of higher cognitive function measures. Additionally, overall, the FC patterns of the

parcels in supramarginal gyrus and the Broca region show predictive power for psychometric
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variables related to language processing and crystallized intelligence. Both regions have been
previously shown to be involved in word and phonological processing (Binder et a. 1997,
McNealy et a. 2006; Klepousniotou et al. 2014; Twomey et al. 2015; Oberhuber et a. 2016).
Comparing the prediction profile of the left and right Broca region further supports the
validity of our approach since, in contrast to the left Broca region, the right Broca region
showed relatively low predictive power for language task performance, a pattern that is in
agreement with the left hemisphere’s dominance for language function (Clos et al. 2013;
Karsolis et a. 2019). Furthermore, parcels in these two regions also showed predictive power
for working memory measures, in agreement with their role in the phonological loop in
traditional working memory models (Salmon et al. 1996; Smith and Jonides 1999; Zurowski
et a. 2002; Rogalsky and Hickok 2011). Finally, the anterior hippocampus also shows some
predictive power for general cognition performance, including reading and cognitive
flexibility. However, differences between hemispheres in psychometric profile were aso
observed for the hippocampus. Hence, the right hippocampus showed relatively high
predictive power for language performance, relational task performance as well as picture
vocabulary, while the left hippocampus showed relatively high predictive power for
endurance and extraversion. Because the hippocampus parcels were in a volumetric format,
their psychometric prediction profile can be compared with behavioral profiling derived from
the aggregation of activation data (which is typically in volumetric format). Here, computing
the behavioral profile of the anterior hippocampi confirmed that these regions are usually
associated with memory and emotion (Moser and Moser 1998; Prince et a. 2005; Plachti et
a. 2019). Hence, the psychometric profile of brain regions revealed here partly converge with
the apriori information from the human brain mapping literature, including when a
quantitative statistical approach is used to summarize this literature (but see last paragraph for

adiscussion on the limitations).
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Across the parcels, the comparisons between parcel-wise and whole-brain prediction
accuracies revealed two different trends. For multidetermined psychometric variables like the
cognition composite scores, while most parcel-wise predictions were statistically significant,
their accuracies usually amounted to half the whole-brain accuracies. Such findings
reinforced the conceptual view according to which such general cognitive performance is
supported by wide-spread distributed networks rather than individual regions. On the other
hand, performance at several psychometric variables could be predicted roughly equally well
by the region-based and the whole-brain approach, like cognitive flexibility and working
memory performance. In these cases, it is possible that the connectivity profile of some
specific regions would contain crucial information for the prediction, so that the whole-brain
connectivity matrix does not necessarily convey more relevant signal than the parcel-wise
connectivity features from a predictive standpoint. Future studies could further investigate if
region-based approach could predict some psychometric variables better than the whole-brain
approach and the implications, both from a conceptual cognitive neuroscience point of view
and from an applied perspective. In the current work, we focus on optimizing our region-
based approach and validating the additional insights provided by combining it with whole-
brain approaches. Neurobiological validation was assessed by showing the convergence with
the brain mapping literature. We would here like to emphasize that, to the best of our
knowledge, the neurobiological validity or utility for cognitive neuroscience of predictive
models is very rarely investigated in connectivity-based studies. Most studies adopted an a
priori focus on specific networks or regions to build a predictive model and are, in that sense,
not truly data-driven, while other studies derived neuroscientific interpretations from the
weights assigned to the features, an approach which has been shown to be misleading (Haufe
et a. 2014). Thus, we believe that our study addresses an important gap in the current brain-

based prediction literature.
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In the same vein, our examination of the psychometric prediction accuracy spatial
distribution maps appeared to converge also well with the brain mapping literature. When
examining specific measures such as strength performance, our prediction maps revealed a
relatively specific pattern reminiscent of the sensorimotor network. In contrast,
multidetermined score such as the crystallized intelligence composite score revealed a very
broad pattern, in which the parcels with the highest prediction power lie in regions that
frequently show high interindividual variability in RSFC patterns, such as the supramarginal
gyrus and the anterior insula (Mueller et al., 2013; Laumann et al., 2015; Kong et al., 2019).
Comparing the pattern of prediction performance for the total accuracy score for the 2-back
task and the same score only for faces material revealed overal similar patterns but with
higher prediction power in the right hemisphere for faces, in particular in the ventral temporal
regions, in agreement with the literature on faces processing in the brain (Sams et al., 1997,

Nakamuraet al., 2000; Nelson, 2001).

When examining the accuracy distribution maps across granularities level (i.e. region
subdivision level), the overal patterns remain similar for every selected psychometric
measure. With increased granularity, especially at 200-parcel and 300-parcel granularity, the
proportion of parcels showing high predictive power increased. This coincides with our
observations of achieving higher prediction performance in whole-brain CBPP with higher
granularity, thus reinforcing the conclusion that 200 to 300 parcels represents an optimal
range for fMRI surface data. Finally, our observation that the subdivision of broad functional
region into specific parcels at higher granularity goes along with the higher predictive power
for some parcels may reflect the fact that these parcels represent functional sub-units, and
hence that 200/300 parcels granularity provides a better representation of brain functional

data from a cognitive neuroscience standpoint.
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To sum up, overal, several lines of evidence support the validity of a region-wise
connectivity-based psychometric prediction framework. In the absence of ground truth, one
line of validation of the brain-behavior pattern here was the comparison with patterns yielded
by activation studies. However, comparisons between the two approaches remain
conceptually questionable because brain patterns of activation studies typically reflect regions
that are consistently activated across samples of participants and thus, regions whose
activations should strictly not depend on interindividual variability in the completion of the
task (see Genon et a. 2018 for a broader discussion). In contrast, a connectivity-based
prediction approach of psychometric data typically capitalizes on the interindividual
variability in brain and behavior. Therefore, the question remains fully open on the extent to
which both approaches should converge. Our framework could bring further insight into this
guestion in the future. As an additional challenge for the future, our region-wise approach
remains limited by some general issues that affects the whole field of connectivity-based
psychometric prediction. Namely, the prediction performance remains in a relatively low
range, reflecting the limited part of variance in psychometric variables in a healthy adult
population that can be explained by interindividua variability in resting-state functional
connectivity. Consequently, inferences made based on connectivity-based psychometric
prediction are inherently weak and remain to be, at least conceptualy, replicated. At first
sight, the best predicted scores for both region-wise and whole-brain based predictions are
very genera scores reflecting global cognitive abilities, such as composite scores, crystallized
and fluid intelligence, as well as vocabulary level. We can assume that education (both
formal with regards to year spent in academia, as well as informal, as determined by the
socio-economic background) plays a major role in this interindividual variability, shaping
brain functional connectivity across years and, in turn, optimizing performance at standard

cognitive tests. This is the reason why we refrained from regressing variance related to
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education in the present study. However, the current approach offers a framework to
progressively disentangle the influence of factor such as formal education on the relationship
between region’s connectivity profile and one’'s cognitive abilities. Thus, the current

framework shows potential to address open questions and issuesin the field in the future.

One general conceptual limitation of our region-based framework would be the
negligence of the distributed aspect of brain-behavior relationship, where the behavior in
consideration arises from wide-spread distributed networks instead of localized regions
(Dubois et a. 2018; Genon et al. 2018). This conceptual perspective is usually referred to as
“globa” (whole-brain connectivity or network-based connectivity) approaches in the
prediction of behavior (Kong et al. 2019; Kashyap et al. 2019; Pervaiz et al. 2020). In line
with this view, the global approaches usually lead to higher prediction performance for many
behvaioral variables. Accordingly, a global approach should be preferred when the overall
prediction performance matters, while our region-based approach helps to evaluate the
relative contribution across regions for specific cognitive measures. Importantly, both
approaches could be used in conjunction for additional insights into the extent at which
distributed or localized certain brain-behavior relationships are, as illustrated in our analysis

of brain region’s psychometric profiles.

To conclude, by using high quality data, including a broad range of psychometric
measures in a healthy adult cohort, we developed a region-wise connectivity based
psychometric prediction framework based on supervised learning approaches linking resting-
state functional connectivity of brain regions to behavior. To promote the use of our specific
region-wise approach in cognitive neuroscience studies, we illustrated two main applications
for which we evaluated the brain region-behavior relationships: 1) psychometric profiles of
brain regions, and 2) brain maps of prediction accuracies distribution for specific

psychometric variables. The material to implement our approach is openly available at
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https:.//github.com/inm7/cbpp. To demonstrate the potential contribution of our region-based

approach based on its increased transparency, we illustrated how sophisticated denoising can
provide a clarified picture of the association between brain and behavior. We also illustrated
the spurious effect of confounds such as brain size on the predictive model. Future work
should investigate the potential benefits of utilizing individualized parcellations (Kong et al.
2019). The developed framework could also contribute to a better understanding of the
relationships between brain regions' connectivity and behavioral phenotypes in aging and
clinical populations. The transferability of our framework in this context should be

investigated in future studies.

Code availability

All codes are publicly available at https://github.com/inm7/cbpp.
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