000892086 001__ 892086
000892086 005__ 20240313103124.0
000892086 0247_ $$2doi$$a10.1093/texcom/tgab033
000892086 0247_ $$2Handle$$a2128/28448
000892086 037__ $$aFZJ-2021-01922
000892086 041__ $$aEnglish
000892086 082__ $$a300
000892086 1001_ $$0P:(DE-Juel1)171408$$aDąbrowska, Paulina Anna$$b0$$eCorresponding author
000892086 245__ $$aOn the complexity of resting state spiking activity in monkey motor cortex
000892086 260__ $$aOxford$$bOxford University Press$$c2021
000892086 3367_ $$2DRIVER$$aarticle
000892086 3367_ $$2DataCite$$aOutput Types/Journal article
000892086 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1628592594_23647
000892086 3367_ $$2BibTeX$$aARTICLE
000892086 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892086 3367_ $$00$$2EndNote$$aJournal Article
000892086 520__ $$aResting state has been established as a classical paradigm of brain activity studies, mostly based on large scale measurements such as fMRI or M/EEG. This term typically refers to a behavioral state characterized by the absence of any task or stimuli. The corresponding neuronal activity is often called idle or ongoing. Numerous modeling studies on spiking neural networks claim to mimic such idle states, but compare their results to task– or stimulus-driven experiments, or to results from experiments with anesthetized subjects. Both approaches might lead to misleading conclusions. To provide a proper basis for comparing physiological and simulated network dynamics, we characterize simultaneously recorded single neurons' spiking activity in monkey motor cortex at rest and show the differences from spontaneous and task– or stimulus-induced movement conditions. We also distinguish between rest with open eyes and sleepy rest with eyes closed. The resting state with open eyes shows a significantly higher dimensionality, reduced firing rates and less balance between population level excitation and inhibition than behavior-related states.
000892086 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000892086 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000892086 536__ $$0G:(GEPRIS)238707842$$aDFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)$$c238707842$$x2
000892086 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000892086 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000892086 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x5
000892086 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892086 7001_ $$0P:(DE-Juel1)168479$$aVoges, Nicole$$b1
000892086 7001_ $$0P:(DE-Juel1)171972$$avon Papen, Michael$$b2
000892086 7001_ $$0P:(DE-Juel1)144576$$aIto, Junji$$b3
000892086 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b4
000892086 7001_ $$0P:(DE-Juel1)172858$$aRiehle, Alexa$$b5
000892086 7001_ $$0P:(DE-HGF)0$$aBrochier, Thomas$$b6
000892086 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b7
000892086 773__ $$0PERI:(DE-600)3040464-2$$a10.1093/texcom/tgab033$$gp. tgab033$$n3$$ptgab033$$tCerebral Cortex Communications$$v2$$x2632-7376$$y2021
000892086 7870_ $$0FZJ-2020-02151$$aDąbrowska, Paulina Anna et.al.$$dCold Spring Harbor : Cold Spring Harbor Laboratory, NY, 2020$$iIsParent$$r$$tOn the complexity of resting state spiking activity in monkey motor cortex
000892086 8564_ $$uhttps://juser.fz-juelich.de/record/892086/files/tgab033.pdf$$yOpenAccess
000892086 8767_ $$d2021-04-27$$eAPC$$jDeposit$$lDeposit: OUP
000892086 909CO $$ooai:juser.fz-juelich.de:892086$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000892086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171408$$aForschungszentrum Jülich$$b0$$kFZJ
000892086 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171408$$aRWTH Aachen$$b0$$kRWTH
000892086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144576$$aForschungszentrum Jülich$$b3$$kFZJ
000892086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b4$$kFZJ
000892086 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-Juel1)172858$$aAix-Marseille Université$$b5$$kAMU
000892086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172858$$aForschungszentrum Jülich$$b5$$kFZJ
000892086 9101_ $$0I:(DE-588b)1043886400$$6P:(DE-HGF)0$$aAix-Marseille Université$$b6$$kAMU
000892086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b7$$kFZJ
000892086 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)144168$$aRWTH Aachen$$b7$$kRWTH
000892086 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000892086 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000892086 9141_ $$y2021
000892086 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892086 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892086 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000892086 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000892086 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000892086 9801_ $$aAPC
000892086 9801_ $$aFullTexts
000892086 980__ $$ajournal
000892086 980__ $$aVDB
000892086 980__ $$aUNRESTRICTED
000892086 980__ $$aI:(DE-Juel1)INM-6-20090406
000892086 980__ $$aI:(DE-Juel1)IAS-6-20130828
000892086 980__ $$aI:(DE-Juel1)INM-10-20170113
000892086 980__ $$aAPC
000892086 981__ $$aI:(DE-Juel1)IAS-6-20130828