000892131 001__ 892131
000892131 005__ 20250129094320.0
000892131 020__ $$a978-3-95806-575-8
000892131 0247_ $$2Handle$$a2128/28442
000892131 037__ $$aFZJ-2021-01966
000892131 041__ $$aEnglish
000892131 1001_ $$0P:(DE-Juel1)169442$$aSchöffmann, Patrick$$b0$$eCorresponding author$$gmale$$ufzj
000892131 245__ $$aStoichiometric control and magnetoelectric coupling in artificial multiferroic heterostructures$$f - 2021-04-15
000892131 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2021
000892131 300__ $$avii, 176 S.
000892131 3367_ $$2DataCite$$aOutput Types/Dissertation
000892131 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000892131 3367_ $$2ORCID$$aDISSERTATION
000892131 3367_ $$2BibTeX$$aPHDTHESIS
000892131 3367_ $$02$$2EndNote$$aThesis
000892131 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1642145238_4888
000892131 3367_ $$2DRIVER$$adoctoralThesis
000892131 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v247
000892131 502__ $$aDissertation, RWTH Aachen, 2021$$bDissertation$$cRWTH Aachen$$d2021
000892131 520__ $$aThe demand for smaller and faster information storage media, new types of sensors and multifunctional devices has lead to a rush in research on transition metal oxides (TMO's). Strong electronic correlations in TMO's lead to a wealth of new and interesting effects. Particularly the use of artificial multiferroic heterostructures using advanced thin film growth techniques, has attracted a lot of interest, as they enable the tailoring of the physical properties of individual materials and hold the promise of new combined functionality. The subject of this thesis is control of the magnetisation in thin TMO films using the ferroelectric substrate [Pb(Mg$_{1/3}$Nb${_{2/3}}$)O$_{3}$]$_{0.7}$-[PbTiO$_{3}$]$_{0.3}$ (PMN-PT). The first part of this thesis is about the fabrication and investigation of SrCoO$_{3-{\delta}}$, which has different magnetic and conductive properties depending on the oxygen content. Importantly, the antiferromagnetic, insulating SrCoO$_{2.5}$ can be transformed reversibly in the ferromagnetic, metallic SrCoO$_{3}$. To grow epitaxial and stoichiometric Sr$_{1}$Co$_{1}$O$_{2.5}$ films by molecular beam epitaxy (MBE), the deposition parameter have to be precisely controlled. To determine the Co-to-Sr ratio $\textit{in-situ}$ and optimise it, Reflection High Energy Electron Diffraction (RHEED) can be used. The RHEED scattering pattern changes depending on the Co/Sr ratio and can be used to determine Co excess or deficiency and to grow stoichiometric Sr$_{1}$Co$_{1}$O$_{2.5}$ samples. High quality SrCoO$_{2.5}$ can be transformed to SrCoO$_{3}$ by heating in oxygen flow and the resulting films remain stable in vacuum. SrCoO$_{3-{\delta}}$ films (with $\delta$< 0.25) form three distinct magnetic phases and show an exchange bias effect. The magnetic phases are distributed uniformly throughout the film, as can be determined by Polarised Neutron Reflectometry (PNR). Due to a mismatch of lattice constants, SrCoO$_{2.5}$ films can't be grown directly on PMN-PT. However, using an La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ buffer layer, crystalline SrCoO$_{2.5}$/La$_{0.67}$Sr$_{0.33}$MnO$_{3}$/PMN-PT heterostructures can be grown. The second part of the dissertation is about the magnetoelectric coupling in Fe$_{3}$O$_{4}$/PMN-PT(001) and Fe$_{3}$O$_{4}$/PMN-PT(011) heterostructures grown by pulsed laser deposition. The strain and polarisation of the substrate with applied electric field mediate the coupling to the magnetisation in the ferrimagnetic layer. Using a qualitative model, the strength of the different contributions can be estimated. The substrate cut and orientation of the sample in the magnetic field has a strong influence on the magnetoelectric behaviour of the layer.
000892131 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000892131 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
000892131 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000892131 8564_ $$uhttps://juser.fz-juelich.de/record/892131/files/PhD_thesis_Schoeffmann_after_defense.pdf$$yOpenAccess
000892131 8564_ $$uhttps://juser.fz-juelich.de/record/892131/files/Schluesseltech_247.pdf$$yOpenAccess
000892131 909CO $$ooai:juser.fz-juelich.de:892131$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169442$$aForschungszentrum Jülich$$b0$$kFZJ
000892131 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x0
000892131 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
000892131 9130_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000892131 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000892131 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000892131 9130_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000892131 9130_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000892131 9141_ $$y2021
000892131 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892131 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892131 920__ $$lyes
000892131 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000892131 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000892131 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000892131 9801_ $$aFullTexts
000892131 980__ $$aphd
000892131 980__ $$aVDB
000892131 980__ $$abook
000892131 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000892131 980__ $$aI:(DE-Juel1)PGI-4-20110106
000892131 980__ $$aI:(DE-82)080009_20140620
000892131 980__ $$aUNRESTRICTED
000892131 981__ $$aI:(DE-Juel1)JCNS-2-20110106