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Core ideas 

CERES-Maize model was evaluated under different fertilizer types and climatic conditions 

The model provided estimates of N losses via leaching and gaseous emissions 

CERES-Maize model can be used for maize yield prediction under nemoral climate conditions 

 

Abstract 

Little information is available regarding the performance of the CERES-Maize model under 

nemoral climate conditions. Therefore, this study aims to estimate and compare major soil-plant 

nitrogen (N) cycle parameters in grain maize crop after application of synthetic and different organic 

fertilizers solely or in combination in nemoral zone maize production, using the DSSAT model. Field 

experiments carried out during 2015, 2016, and 2017 in Akademija (Lithuania) were considered for 

model calibration and validation. The model was successfully validated for total aboveground 

biomass (TAB, R
2 

= 0.89), grain yield (GY, R
2 

= 0.85), and acceptably for leaf area index (LAI, R
2 

= 

0.57), total plant N uptake (R
2 
= 0.61), and residual soil mineral nitrogen (R

2 
= 0.64). The lower plant 

N uptake and soil mineral nitrogen (SMN) observed for the pelletized cattle manure (PCM) and green 
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waste compost (GWC) treatments compared to the fertilization with synthetic ammonium nitrate 

(AN) were successfully captured by the model. Finally, the model provided reasonable predictions of 

the temporal dynamics of measured soil water content (SWC) and soil temperature. The validated 

model was further used to provide N loss estimations during the maize growing seasons via leaching 

and gaseous emissions. The results showed that the CERES-Maize model can successfully be used to 

simulate maize growth under the extreme climatic conditions of the nemoral zone in combination with 

different N managements. Nevertheless, additional efforts are needed to verify and fine-tune the 

model to comprehensively simulate the N cycle, especially losses by drainage water and gaseous 

emissions. 

Keywords. N uptake, soil mineral nitrogen, N losses, grain yield 

 

1. Introduction 

In agricultural systems, climate change is leading to alterations in yield potentials, crop 

suitability, and impacts agricultural practices such as sowing and fertilization dates but also 

fertilization rates. In Northern Europe, increased temperatures and a longer warm-season period 

encourages expansion of summer crops with higher yield potential, and fosters intensification of 

management including fertilization, increasing the risk of surface and groundwater pollution through 

nutrient leaching and surface runoff (Jeppesen et al., 2009; Supit et al., 2010). In 2002, grain maize 

has been cultivated in Lithuania on an area of 2,900 ha
-1

, and during the last 2 decades, the cultivation 

area significantly increased to 12,770 ha
-1

, during the same period total crop production increased 

from 8,300 t to 97,970 t (FAOSTAT 2019). The projected climate scenarios indicate grain maize 

expansion northwards. In fact, the maize cropping share by 2040 in southern Scandinavia and Baltic 

countries is expected to increase by 4 to 20% of the total agricultural area (Elsgaard et al., 2012). A 

recent model study has shown that in the nemoral climate zone, maize grain yield potential can reach 

about 11 t ha
-1

 (Žydelis et al., 2018). However, the high year-to-year variability, induced by abiotic 

factors, particularly drought stress, can significantly reduce yields (Webber et al., 2018). Employing 
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the best crop management practices adapted to local climate and specific farming conditions is crucial 

to achieve optimum yields and to minimize impacts on air and water quality.  

Nitrogen (N) is essential for crop production. However, currently only ~47% of the nitrogen 

added globally onto cropland is converted into harvested products (Lassaletta et al., 2014). Thus, 

more than half of the nitrogen used for crop fertilization is currently lost into the environment. 

Nitrogen loss through nitrate leaching into ground and surface waters is one of the major concerns in 

the EU, particularly in the Baltic Sea region (Povilaitis et al., 2014), because almost the entire Baltic 

Sea is surrounded by land and it is more sensitive to pollution than other marine ecosystems. It is also 

well known that part of the applied fertilizer N is lost as ammonia (NH3), or, via nitrification and 

denitrification, as nitrous oxide (N2O) and dinitrogen (N2) (Coskun et al., 2017). Although, the 

emission through N2O losses is quantitatively of minor importance in terms of soil N balance, losses 

are highly important because of its impact on the greenhouse effect due to its radiative properties (i.e. 

the global warming potential of 1 kg N2O is equivalent to 265 kg of CO2). The European Common 

Agricultural Policy has delivered the Nitrates (91/676/EEC) and the Air Quality (2016/2284/EU) 

Directives to reduce N leaching and N losses to the atmosphere, respectively. Both directives 

emphasize the need to improve nitrogen use efficiency through application of the best nutrient 

management practices (BNMP). These Directives have been translated to the different countries or 

regions according to their specific crops, climatic, and management conditions. However, the 

practical application of the BNMP is not straightforward because optimum N rates change according 

to several factors, especially with variability in annual and local conditions. Therefore, mid-season 

adjustments are recommended as was shown for maize fields in the U.S. (Dhital and Raun, 2016). 

The use of synthetic fertilizers dominates current agricultural practices in industrialized 

countries. However, their partial substitution by organic fertilizers from nearby livestock or poultry 

farms can be a good solution to simultaneously improve nutrient cycling at regional scale and soil 

quality (Tripolskaja et al., 2010; Francis and Porter, 2011). Short- and long-term effects of different 

manures on crop yield, soil fertility, as well as impacts on water and, to a lesser extent, on air quality, 

have been comprehensively investigated and broadly described (Merbach and Schulz, 2013; Duan et 
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al., 2014). Yet, redistribution of manure nutrients from intensive animal production areas to crop 

production land needs further agronomic, environmental, and socio-economic assessment. Nutrient 

content of pelletized manure can be similar to that of raw manure, although the organic matter 

decomposition and N mineralization can substantially differ from those of its raw material (Hadas et 

al., 1983; Jimenez et al., 2017). In addition, a wide range of wastes with diverse characteristics and 

quality parameters such as total N content, form of N, and C:N ratio, generated from municipal and 

agricultural activities, can be used as a nutrient source for agricultural crops (Mohanty et al., 2013). 

Thus, we can expect different crop yield response and potential N losses across years because 

different N sources can demonstrate source-specific behaviour. A recent meta-analysis by Abalos et 

al. (2016), including 200 U.S. maize field experiments, suggested that total or partial substitution of 

synthetic fertilizers by organic sources may contribute to the mitigation of N2O emissions, but 

potentially at the cost of substantial yield reduction. 

Traditional field experiments have been the common approach to evaluate the impact of 

changes in agricultural management practices on crop performance. However, major constraints of 

field experiments are that they are labour-intensive and time-consuming and data interpretation can 

become complicated when it is necessary to assess the interaction of multiple factors in the plant-soil-

climate system and to estimate crop yield traits and environmental impacts. Alternatively, crop 

models are powerful tools facilitating the assessment of the interaction that occurs between crops and 

the environment. Crop models simulate plant growth and development and predict crop yields based 

on crop management, soil and weather conditions, and the choice of cultivar (Li et al., 2018) and 

provide insights into “What-if” questions about crop production. CERES-Maize is a well-known crop 

simulation model developed to predict maize growth (Hoogenboom et al., 2010). Since its launch in 

1986 (Jones and Kiniry, 1986), it has been periodically updated and its latest version (v 4.7.5) was 

released in 2019 (Hoogenboom et al., 2019). CERES-Maize has been intensively tested worldwide in 

terms of irrigation management (Malik and Dechmi, 2019), N fertilizer management (Yakoub et al., 

2017; Malik et al., 2019), predicting water and nitrogen requirements (Hammad et al., 2018), 

simulating the maize N cycle (Liu et al., 2011) and N leaching losses (Gerakis et al., 2006). However, 
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less information is available about the performance of CERES-Maize in the nemoral climate zone, 

which is characterized as continental, cool with a rather short growing season (Metzger et al., 2012).  

To implement the strategy of full or partial N substitution of synthetic fertilizers with those 

from organic sources requires a better understanding of the effects of different organic fertilizers on 

the soil-plant system. In particular, it is important to obtain reliable estimates of mineralization rates 

of organic N under local soil conditions, because this process is essential to predict the amounts and 

time of release of plant available soil N. Besides, it governs major N loss pathways such as nitrate 

leaching, ammonia volatilization, or nitrous oxide emissions. Responses of grain maize and N cycle to 

fertilizers, especially organic, have not yet been adequately addressed in the nemoral climate zone, 

and most of the crop growth models tested in the Baltic Sea region so far, have mainly focused on 

mineral fertilizers (Povilaitis and Lazauskas, 2010; Salo et al., 2016; Zhou et al., 2018).  

Therefore, the objectives of this study were: (i) to calibrate and validate the CERES-Maize model 

under the climatic conditions of the Nordic-Baltic region, (ii) to evaluate the prediction capacity of the 

validated model in simulating the soil water content and temperature dynamics over three maize 

growing seasons, and (iii) to assess the impact of different rates and types of fertilizers (synthetic, 

manure, green compost, and their combination) in N losses by leaching and gaseous emissions to the 

environment under different maize growing seasons. 

2. Materials and methods 

2.1.Experimental location 

The input data required for the CERES-Maize model were collected from maize (Zea mays 

L.) field experiments carried out during the years 2015, 2016, and 2017 in Akademija (Central 

Lithuania; 55°39 N, 23°86 E, 65 m asl). The field is located within an intensive cash crop production 

region. However, the application rate of organic fertilizers is restricted because the area is a declared 

nitrate vulnerable zone, with high risk of agricultural nitrate pollution (EU, 2018). The historical 

average (1981−2010) annual air temperature and precipitation was 7ºC and 557 mm, respectively. 

According to the Köppen climate classification (Kottek et al., 2006), the climate is humid continental 
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(Dfb) with warm summers and rather severe winters. The soil is a Stagnic Hypocalcic Luvisol 

(Loamic, Drainic) with a depth of 155 cm (WRB, 2014), which is the prevailing soil type in 

Lithuania. For each experimental year, the soil nutrient status was assessed from composite soil 

samples taken from 12 different locations within the experiment field. The main soil agrochemical 

characteristics were determined in the top soil layer (0−20 cm). Additionally, nitrate and ammonium 

concentration was determined from 0−30 and 30−60 cm soil depths (Table 1). 

2.2. Crop management 

A maize cultivar RGT AGIRAXX (FAO number 190) was selected due to its short growing 

period and because it is widely used by local farmers. The maize was grown after conventional tillage 

and was sown on 8
th
 of May in 2015 and 10

th
 of May in 2016 and 2017, when the soil temperature had 

reached 8 to 10°C, with a density of 70,000 plants ha
-1

 (0.75 m row and 0.18 m plant spacing). Weeds 

were controlled by the herbicide MAISTER OD (oil dispersion containing 30 g l
-1

 foramsulfuron + 1 

g l
-1

 lodosulfuron, rate 1.7 l ha
-1

). Maize harvest was performed manually after the first autumn frosts 

(12
th
 of October 2015, 10

th
 of October 2016 and 2017). The field experiments of the three years 

included 8 treatments (Table 2) in a randomized block design with four replicates. The total area of 

each experimental plot was 30 m
2
, and the harvest plot area was 12 m

2
. The treatments included 

different nitrogen fertilization sources (mineral, organic fertilizers, and a combination of both sources) 

and two additional mineral supply of two levels superphosphate (45 and 90 kg N ha
-1

) and potassium 

chloride (85 and 170 kg N ha
-1

) fertilizers to avoid P and K deficiencies. The mineral fertilizers were 

in the form of ammonium nitrate (34.4-0-0), superphosphate (0-20-0), and potassium chloride (0-0-

60). Fertilizers were applied manually in single application before planting and incorporated into the 

soil before maize drilling. The pelletized cattle manure (PCM) and pelletized poultry manure (PPM) 

were manufactured by local producers. 

The highest N fertilization rate was selected according to the requirements of the Nitrates 

Directive of the European Union (91/676/EEC), which limits annual manure application rates to 170 

kg of N per year in nitrate-vulnerable areas (Schröder et al., 2013). The main characteristics of the 

organic fertilizers are shown in Table 3. 
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2.3. Field measurements and laboratory procedures 

During the maize vegetative period, plant development stages were recorded on a weekly 

basis. Maize vegetative (V) and reproductive (R) development stages were identified on the basis of 

each treatment when 50% or more of the plants were at a particular development stage (Abendroth et 

al., 2011). The leaf-collar method was used to record the development of vegetation stages, whereas 

reproductive stages were based on established visual indicators of kernel development. Leaf area was 

measured five times per season at vegetative (growing stages V8 and V14), tasseling (VT), 

reproductive milking (R3), and physiological maturity (R6) stages. For this, 20 randomly selected 

plants from each treatment (five plants per replicate) were used and leaf area was measured using a 

portable and non-destructive leaf area meter model CI-203 (CID® Inc, WA, USA). Based on the 

resulting values, the leaf area index (LAI) was calculated by: 

      
              

                
                                                                                                                                        

(1) 

 

At maize physiological maturity (growth stage R6), the two central rows of each plot (12 m
2
) 

were cut to determine the total aboveground biomass (TAB) and grain yield (GY). The maize samples 

were weighed (fresh mass) and dried at 65°C until constant weight (dry weight) to estimate the TAB 

and GY on a dry matter basis. TAB and GY subsamples taken at the R6 growing stage were used to 

determine total plant N concentration using Kjeldahl method (Mažeika et al., 2020). For each plot, 

accumulated N uptake in GY and remaining parts of plant (based on dry matter) were calculated 

separately by multiplying the resulting nitrogen concentration (N%) by the corresponding yield by: 

 

                   
                        

   
                                                                                                                 

(2) 

 

For the modelling, determined N uptake in the GY and the N remaining parts of the plants (leaves, 

stalk, husk, and cobs) were added together to obtain the total maize N uptake. 
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The volumetric soil water content (SWC) was measured in the AN170 treatment regularly 

(eleven measurements in 2015 and 2017, eight measurements in 2016) at 0−10 cm soil depth using a 

portable TRIME-FM2 TDR field measurement device (IMKO, GmbH, Ettlingen, Germany). 

Additionally, SWC was measured at 60 cm soil depth using site specific calibrated “Watermark” soil 

moisture sensors (Irrometer Company, Riverside, CA, USA) every 7 to 14 days. Soil temperature 

(Tsoil) was measured periodically at 0−10 cm soil depth using a TESTO thermometer. In total, 15 Tsoil 

measurements were carried out in 2015, 10 in 2016, and 9 in 2017. 

Two days after harvest, composite soil samples were taken at 0−30 and 30−60 cm depth to 

determine nitrate and ammonium content. In each plot, soil samples (≈ 400 g) consisting of four to 

five sub-samples, were taken at randomly selected points. For soil, the modelling of the bulk soil 

mineral nitrogen (SMN), the different nitrate and ammonium nitrogen concentrations determined 

from the two considered depths, were merged into a cumulative value representing the depth of 0−60 

cm. SMN was measured spectrometrically (ISO 14256-2:2005) using a spectrometric analyser 

(Fiastar 5000, Foss Tecator AB). 

 

 

2.4. Statistical analyses  

Analyses of variance (ANOVA) for a randomized complete block design was used to analyse 

TAB, GY, SMN, and N uptake data. Combined analyses of three-year data were conducted to analyse 

year × treatment interaction, according to the procedures described by Petersen (1994). Statistical 

analyses were performed using proc GLM, SAS v9.4 (SAS Institute Inc., 2016). Treatment was 

considered as a fixed effect and year as a random effect. Multiple comparisons between treatments 

were performed using the Tukey’s test at the 0.05 probability level. The statistical significance levels 

considered were: “ns” to indicate no significance (p > 0.05); “*” to indicate 0.05 ≥ p > 0.01; “**” to 

indicate 0.01 ≥ p > 0.001 and “***” to indicate p ≤ 0.001. 
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2.5.CERES-Maize model description and input data 

The DSSAT (Decision Support System for Agrotechnology Transfer) software comprises 

dynamic crop growth simulation models for over 42 crops (Hoogenboom et al., 2019a; Hoogenboom 

et al., 2019b; Jones et al., 2003). For maize, DSSAT uses the CERES-Maize model (Jones and Kiniry, 

1986). The CERES-Maize version used in this work is the one included in DSSAT-4.7.5 The growing 

stages simulated include germination, emergence, end of juvenile, floral induction, 75% silking, 

beginning of grain fill, maturity, and harvest. The N component of the model includes soil 

mineralization and immobilization associated with decomposition of organic matter, transformation 

processes, movement (leaching), and plant uptake. The effects of water and N deficits on crop growth 

and development are taken into account by computing water and N stress factors, with the more 

limiting of the two effects controlling a given process. The model requires daily weather input data 

(maximum and minimum air temperature, solar radiation, precipitation, relative humidity, and wind 

speed), soil characteristics (horizons depth, texture, bulk density, water saturation, field capacity, 

wilting point, saturated hydraulic conductivity, initial nitrogen, water, and organic carbon content), as 

well as crop management practices (mainly tillage operations, sowing date, plant density, dates and 

amounts of both mineral and organic N fertilization, and harvest). The DSSAT model uses the 

Penman–Monteith-FAO56 method (Allen et al., 1998) to compute daily potential evapotranspiration, 

the Ritchie model to calculate infiltration and the soil water balance (Ritchie, 1998), radiation 

efficiency for photosynthesis, and the Ritchie−Ceres approach for soil evapotranspiration (Ritchie, 

1998). For the turnover of organic matter, the CENTURY (Parton et al., 1994) model is implemented. 

Experimental organic treatments (PCM, PPM, GWC) presented in Table 2 were entered into 

the model when updating the already existing organic amendments characteristics, while for mineral 

fertilizers' treatments we selected the required fertilizer material and fertilization rate. The soil lower 

limit of water holding capacity (LL), drained upper limit (DUL) and saturated soil water content 

(SAT) characteristics were measured in 2017 using the HYPROP
®
 (UMS, München, Germany) 

method as described by Schindler et al. (2010) in combination with the WP4® Dewpoint 

Potentiometer (Decagon Devices, WA, USA). Saturated hydraulic conductivity, Ksat, was measured 
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using a falling head by the KSAT system (UMS, München, Germany). For all measurements, 10 

undisturbed soil samples of 250 cm
3
 were extracted from the major soil horizons at depths of 15–20, 

40–45, 70–75, 90–95, and 120–125 cm. Soil texture was analysed according to DIN ISO 11277 

method (Müller et al., 2009) by wet sieving and the pipette method.  To create the soil profile input 

file in the DSSAT model we used the SBuild program (Hoogenboom et al., 2019a). The model soil 

input data are presented in Table 4. 

The daily meteorological input data for the study were obtained from a meteorological station 

of the Lithuanian Hydrometeorological Service (Ministry of Environment), located ~500 m from the 

maize experimental field. Daily groundwater levels were observed by the Lithuanian Geological 

Survey (Ministry of Environment). The groundwater monitor station was located at a distance of 5 m 

to the meteorological station. 

2.6. Model calibration and validation 

The calibration of CERES-Maize for a specific cultivar requires the estimation of six genetic 

coefficients: P1 (thermal time from emergence to end of juvenile phase), P2 (delay in development 

with photoperiod above 12.5 h), P5 (thermal time from silking to physiological maturity), G3 

(potential kernel growth rate), G2 (potential kernel number per plant), and PHINT (phyllochron 

interval). In addition, the ecotype coefficient RUE (radiation use efficiency) and other nitrogen and 

root parameters should be adjusted. The nitrogen parameters are plant top minimum N concentration 

(TMNC=0.0045), nitrogen content in above-ground biomass at emergence (TANCE=0.044), root 

critical nitrogen concentration (RCNP=0.0107), root N content at emergence (RANCE=0.024), 

maximum value for critical tissue N concentration (CTCNP1=1.42), and coefficient for change in 

concentration with growth stage (CTCNP2=0.255). According to Liu et al. (2012) and Malik et al. 

(2019), the N concentration coefficient (CTCNP2) was also adjusted to improve the plant N 

estimation. Data from the 2015 and 2016 experimental plots and 8 treatments (Table 2) were 

considered for model calibration and information from the 2017 growing season was used for model 

validation. For both calibration and validation processes, the model was tested using the 

corresponding observed experimental data of maximum LAI, TAB, GY, total N uptake, and residual 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=M%C3%BCller%2C+Hans-Werner
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soil mineral nitrogen (SMN) after harvest. In addition, and due to the availability of measured SWC 

and Tsoil within the AN170 treatment, the resulted simulated values of both variables using the 

calibrated parameters were compared to measured data for the three considered years for this 

treatment. The prediction capability of the model for both calibration and validation was tested by the 

coefficient of determination (R
2
), BIAS, and RMSE computed as follows (Wallach, 2006): 

   (
∑       ̅      ̅  

    

√∑      ̅   ∑      ̅   
      

   

)                                                                                                                                            

(3) 

                                                                                                                                                                                                                                                                                  
       ⁄ ∑        

 
    

                                                                                                                                                                          

(4) 

                                    

                                                                                                                                                                          

(5) 

 

 

 

 

where n is the number of observed values, yi  and xi are the simulated and observed values, and ȳ and 

x  are the average observed and simulated values for the i
th
 data pair. R

2
 describes the proportion of 

the variance in measured data explained by the model and ranges from 0 to 1, with higher 

values indicating less error variance. The BIAS measures the average difference between 

measured and simulated values. A positive BIAS indicates model under-prediction and a 

negative BIAS indicates over-prediction. The RMSE is is the square root of the mean square 

error. The smaller BIAS and RMSE, the better the performance of the model. In this work, 

the DSSAT calibration objectives were to maximize R
2
, and to minimize the BIAS, and RMSE 

values.  

The calibration procedures were started with the default values of an available maize short 

season cultivar included in CERES-Maize. First, the genetic coefficients were manually adjusted and 

in a second step the ecotype parameters were optimized manually. The procedure was an iterative 

approach to obtain reasonable genetic coefficients through trial and error corrections until a maximum 
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value of R
2
 and a minimum value of RMSE among the observed and simulated TAB, GY, and 

maximum LAI data was reached. Afterwards, nitrogen parameters were adjusted because the model 

did not show acceptable results in terms of N uptake and SMN. Finally, the genotype coefficient 

calculator embedded in the DSSAT software was used to improve the manual calibration 

(Hoogenboom et al., 2019a). 

2.7. Model application 

The calibrated and validated CERES-Maize model was applied to assess the predicted N 

leaching below the root zone, and nitrous oxide (N20) and Ammonia (NH3) emissions for the different 

nitrogen fertilization trials during the three considered growing seasons. 

 

3. Results  

3.1. Maize growing conditions  

The meteorological conditions during the three maize growing seasons (2015−2017) 

exhibited some differences in terms of air temperature and precipitation. From maize planting to 

harvest, the mean air temperature was 14.7°C in 2015, 15.9°C in 2016, and 14.9°C in 2017. Thus, the 

mean air temperature in 2016 was 0.8°C above the 1981-2010 historical average, while in 2015 and 

2017 it was very close to the historical average. The minimum daily air temperature over the maize 

growing cycle ranged from −3.5°C to 18.7°C in 2015, from 2.2°C to 20.0°C in 2016, and from −1.3°C 

to 18.1°C in 2017, while the maximum daily temperature ranged from 6.1°C to 35.0°C in 2015, from 

5.4°C to 31.9°C in 2016, and from 7.6°C to 32.8°C in 2017. Although time from planting to 

emergence was similar in the three years and varied within a narrow range of 11−14 days after 

planting (sum of growing degree days (GDD) 41−48°C), differences between growing seasons were 

apparent for the later development stages. In 2016, higher air temperatures resulted in a quicker maize 

development, particularly at the vegetative period (VE−VT), which was 11 and 6 days shorter than 

2015 and 2017, respectively. It should be emphasized, that at the V5 growing stage some leaves 

turned purple on the majority of the maize plants in all three years. The colour change is likely be 

caused by changes in leaf pigments (anthocyanin) as a genetic response of short cultivars to chilly 
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nights, as in this period the air temperature dropped below 8°C (Chalker-Scott, 1999). Roughly 14 to 

18 days after this, the leaves fully recovered to their normal green colour without any apparent further 

consequences on growth. 

The year 2015 was exceptionally dry with only 194.2 mm of precipitation over the entire 

maize growing season (66.5% of precipitation compared to the climate normal between 1981−2010). 

At the silking growing stage (R1), maize growth slowed down, mainly caused by insufficient soil 

moisture in the root zone. In consequence, a rapid senescence of basal leaves was observed. In 

contrast to 2015, rainfall was above climate normal with 378.4 mm (129.6%) in 2016 and 448.8 mm 

(153.7%) in 2017. The number of days with heavy precipitation (above 10 mm) was higher in the 

wetter years of 2016 and 2017 than 2015; 4 days in 2015, 12 days in 2016, and 15 days in 2017. 

Groundwater levels corresponded well with precipitation sums and distribution. In 2015, 

groundwater levels were rather deep and varied between 203 and 289 cm below the soil surface 

during the growing season. In 2016, groundwater levels varied from 202 to 249 cm, while in 2017 

groundwater was not so deep and varied from 109 to 231 cm.  

Solar radiation over the maize growing season in all three years was above the climate normal 

with on average 15.2 MJ m
-2

d
-1

 in 2015 (107.9% compared to the climate normal), 14.90 MJ m
-2

d
-1

 

(105.7%) in 2016, and 16.10 MJ m
-2

d
-1

 (114.2%) in 2017. 

As a response to the differences in the three contrasting years observed, maize growth also 

varied. In the 2015−2017 growing seasons, the measured LAI reached the maximum values at the 

tasseling growing stage (VT) with lower values in the dry year of 2015 (LAI 2.76−3.21) and higher 

values in the wetter years of 2016 (LAI 3.03−3.47) and 2017 (LAI 2.79−3.27). The relatively low 

values of maximum LAI can be explained by the observed low number of leaves (14 leaves) produced 

under Nordic climatic conditions compared to other regions with warmer growing seasons where 

maize develops up to 20 leaves (Abendroth et al., 2011). Differences in observed maize TAB and GY 

between years were also directly linked to the total amount of precipitation and air temperature during 

the growing season. On average across all experimental treatments, TAB was 13.58, 17.43, and 15.31 

t ha
-1

 in 2015, 2016, and 2017, respectively. Multi-year ANOVA analysis indicated the significant 
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(p<0.01) effect of year, fertilizer treatment, and the interaction year x fertilizer treatment on TAB. 

Despite some exceptions the treatments effects on TAB showed the following order: AN170 ≈ AN + 

PCM ≈ AN + PPM ≈ AN + GWC > PPM ≈ AN90 > PCM ≈ GWC. On average, GY  was 6.54, 8.68, 

and 7.54 t ha
-1

 in 2015, 2016, and 2017, respectively. The observed maize grain yields are in good 

agreement with independently reported data for the same region. For example, in the variety trials of 

the Lithuanian State Plant Service performed in 2015−2017, the same AGIRAXX variety as used in 

our study showed GY of 7.69−9.46 t ha
-1 

for a vegetation period of 126−135 days after maize 

emergence. Combined analyses of the three-year GY data showed highly significant differences 

between years and among treatments, but the year x treatment interaction was non-significant. The 

effects of treatments on maize GY were similar to those on TAB. Total maize N uptake at 

physiological maturity was significantly lower in dry season of 2015 than wet seasons of 2016 and 

2017. On average, total N uptake was 117.1, 173.3, and 173.1 kg N ha
-1 

in 2015, 2016, and 2017, 

respectively. A multi-year ANOVA indicated the significant (p<0.01) effect of year, fertilizer 

treatment, and the interaction year x fertilizer treatment on N uptake. Additionally, substantial 

differences in residual SMN after harvest in the 0−60 cm soil layer between treatments were found. 

On average, SMN in the 0−60 cm soil layer was 71.6, 65.3, and 60.1 kg N ha
-1 

in 2015, 2016, and 

2017. Combined analyses of the three-year SMN data indicated highly significant differences between 

years and among treatments, but the year x treatment interaction was not significant. 

 

3.2. Model calibration  

The resulting best genotype, ecotype, nitrogen, and root parameters obtained after calibration 

are shown in Table 5. The calibration results are presented for each considered year separately for 

comparison purposes (Fig. 1) as both years differ greatly in climate, even if the calibration was 

performed for both years simultaneously.  
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3.2.1. Total above-ground biomass, grain yield, and leaf area index 

The total above-ground biomass (TAB) measured at physiological maturity (R6) varied 

between the fertilization trials from 11.62 to 14.81 t ha
-1

 in 2015 and from 15.27 to 19.04 t ha
-1

 in 

2016, while the simulated ones varied from 12.45 to 13.92 t ha
-1

 in 2015 and from 15.38 to 18.34 t ha
-

1
 in 2016. The statistical parameters of the calibration period (2015−2016) indicate in general a good 

agreement between observed and simulated TAB with RMSE, R
2
, and BIAS of 0.74 t ha

-1
, 0.94 (p < 

0.01) and -0.39, respectively. These statistical metrics were quite similar for both calibration years 

(2015 and 2016) except for the BIAS, which showed better agreement for the year 2015 (-0.15 vs. -

0.62). Interestingly, in the dry year of 2015, TAB values in the treatments with organic fertilizers 

(PCM, PPM, and GWC) were overestimated by the model by 0.4 to 8%, while in the wetter year of 

2016, TAB was underestimated by 4 to 7% (except for PCM). Additionally, TAB was underestimated 

for both calibration periods for the ammonium nitrate treatment as well as for its combination with 

organic fertilizers. 

The same trend as for TAB was found for the GY for the years 2015−2016, where the 

simulated values matched those observed in the trials, with small RMSE (0.39 t ha
-1

), high R
2
 0.90 (p 

< 0.01), and BIAS close to zero (-0.064), confirming a reasonable calibration of GY. When 

comparing fertilizer treatments and year, the simulated GY in many treatments of the year 2015 were 

slightly higher than the measured ones, whereas no noticeable trend could be detected in the year 

2016. This is also reflected in the statistical parameters for the year 2016, where the RMSE obtained 

for 2015 is better than that for 2016. On the other hand, the contrary was observed for the BIAS. 

The agreement between simulated and observed maximum LAI for the calibration period is 

presented in Figure 1. The statistical measures were reasonably good with a R
2
 of 0.73 (p < 0.05) 

(0.47 in 2015; 0.62 in 2016), RMSE of 0.22 (0.21 in 2015; 0.23 in 2016) and BIAS 0.008 (-0.185 in 

2015; 0.201 in 2016). In 2015, the model underestimated LAI by 6.2% due to higher water stress in 

comparison to the other growing periods, while in the wet year of 2016, maximum LAI was 

overestimated by 6.3%. Additionally, more spreading of the data from the 1:1 line between measured 

/simulated LAI was observed in comparison to TAB and GY (see Fig.1). 
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3.2.2. Maize N uptake and soil mineral nitrogen 

The ability of the CERES-Maize model to simulate total maize N uptake and residual SMN is 

shown in Figure 1. The maize N uptake pattern differed significantly among years (p < 0.01), most 

probably associated to differences simulated in TAB and GY between the years. As can be seen, 

simulated total maize N uptake substantially varied between the years similar to the measured N 

uptake; and in 2015, N uptake was significantly lower compared to the warm-wet season in 2016.  

Irrespective of the considerable N uptake variability, the calculated statistics for the entire 

calibration periods reflect a good agreement between model and observation with R
2
 of 0.81 (p < 

0.01), RMSE of 15.82 kg N ha
-1

, and a BIAS of 2.538. During the drier 2015 season, the model 

simulated well N uptake for the mineral fertilizer treatments (AN90 and AN170), but overestimated 

the N uptake for the treatments with application of organic fertilizers (e.g., 33.2% in PCM) or the 

combination of both types of fertilizers (22.7% in AN+GWC and 22.2% in AN+PCM). In the most 

favourable season for maize growth in 2016, the model mostly underestimated N uptake, except 

treatments AN170, PCM, and AN+GWC. 

Substantial differences in residual SMN in the 0−60 cm soil layer between treatments were 

found for both calibration seasons used (2015 and 2016). Here, it has to be noted that nitrate 

comprised a larger share of SMN, accounting for 80.4% in 2015 and 75.2% in 2016. The measured 

SMN content at harvest along with the predicted values obtained from CERES-Maize are presented in 

Figure 1. The calculated statistics indicate that SMN calibration is acceptable with R
2
, RMSE, and 

BIAS of 0.63 (p < 0.05), 16.1 kg N ha
-1

, and -11.87. In 2015−2016, the model underestimated SMN 

by 19.5 and 13.1%, whereby the highest discrepancies between measured and simulated SMN were 

observed in PCM and PPM treatments, while the calibration was more satisfactory for the mineral 

fertilizer treatments.  

3.3. Model validation 

The validation results for the year 2017 showed that the simulated TAB varied from 12.06 to 

16.85 t ha
-1 

between the treatments, while the measured TAB varied from 13.31 to 16.49 t ha
-1

 (Figure 
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1). The calculated statistics R
2
, RMSE, and BIAS were 0.89 (p < 0.01), 0.83 kg ha

-1
, and -0.55, 

respectively, indicating similar results compared to statistics of the calibration process (Table 6).  

Despite the fact that CERES-Maize slightly underestimated final GY, the model showed good 

agreement between simulated and measured GY during the validation season with R
2
 of 0.85 (p 

<0.01), RMSE of 0.20 t ha
-1

, and BIAS of -0.097. The model explained significantly more than 85% 

of the TAB and GY variability. However, for the rest of the evaluated parameters, the predictive 

capacity of the calibrated model for the validation period was less satisfactory compared to TAB and 

GY. For example, modelled maize maximum LAI for the validation year 2017 showed R
2
 of 0.57 (p < 

0.05), RMSE of 0.128, and BIAS of -0.070. Averaging over all plots, simulated maximum LAI values 

were lower than measured by 3.8%. Regarding the N uptake during the wettest year of the study 

(2017), the simulated N uptake values were lower than measured (underestimation up to 15.6%), 

especially in the treatments with mineral fertilizers (AN90 and AN170). CERES-Maize prediction 

capacity in simulating N uptake during the validation season was reflected by R
2
 of 0.61 (p < 0.05), 

RMSE of 18.12 kg N ha
-1

, and BIAS of -14.2, while for SMN the statistical measures were R
2
 of 0.64 

(p < 0.05), RMSE of 16.5 kg N ha
-1

, and BIAS of -11.588. 

For the soil water content and soil temperature, model comparison between observed and 

simulated data are presented in Figure 2 for all period (2015, 2016 and 2017) and AN170 treatment. 

As expected, the predicted SWC content fluctuations in the upper Ap soil layer (-10 cm) were larger 

than at greater depth such as the E soil layer (-60 cm), which can be related to the effect of 

precipitation-evapotranspiration processes that affect topsoil soil water dynamics most . The 

agreement between simulated and observed SWC during the wet years of 2016 and 2017 was 

satisfactory, with RMSE 0.023 cm
3
 cm

-3
 (R

2
=0.77, (p < 0.01)) in 2016 and 0.025 cm

3
 cm

-3
 (R

2
=0.81, 

(p < 0.01)) in 2017. However, during the drier 2015 season, some peaks of SWC were not properly 

captured at the 10 cm depth with RMSE 0.036 cm
3
 cm

-3
 (R

2
=0.48). During 2015 and 2016, the 

observed SWC at the 60 cm soil-depth was very stable, while in 2017 observed SWC presented more 

variation and was closer to saturation (Fig. 2). The statistical indicators, RMSE and R
2
, showed that in 
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2015 and 2017 the model captured moderately well the pattern of SWC dynamics at 60 cm, while in 

2016 simulation of SWC (-60 cm) was less well represented.  

In general, CERES-Maize smoothly simulated the temporal dynamics of soil temperature at 

the upper Ap soil layer (-10 cm) during the maize growing seasons (Fig. 2). The statistical measures 

indicated a good agreement between observed and simulated soil temperature values with R
2
 ranging 

from 0.80 to 0.88 (p < 0.01) and RMSE ranging from 1.5 to 1.8ºC. 

3.4. Model application to assess the environmental impact of different fertilizers 

3.4.1. N leaching 

Differences in the mass of nitrate leached below 155 cm soil depth were mostly associated to 

year-to-year climatic variability rather than to differences associated to fertilizer treatments (Fig. 3). 

During the cold and dry growing season in 2015, simulated N leached was low, ranging from 0.19 to 

0.38 kg NO3-N ha
-1

 only. Slightly larger N leaching losses were simulated for the warm and rainy 

growing season in 2016, with 1.25 to 1.79 kg N03-N ha
-1

. A major part of these losses occurred during 

a short time period between the growing stages maize blister (R2) to milking (R3). In 2017, N03-N 

leaching of N started earlier (at the tasseling−silking (VT/R1) growing stage) and was more intensive 

than in 2016. The greater leaching rates are likely caused by the higher amount of precipitation, 

especially during the maize reproductive period. In 2017, cumulative N leaching over the maize 

growing season was the highest among all years and for all treatments (Fig 3). The cumulative N 

leached value varied from 4.38 N03-N ha
-1 

(AN90 treatment) to 4.97 kg N03-N ha
-1 

(PPM treatment). 

3.4.2. N2O and NH3 emissions 

Considering all the simulations (3 year x 8 fertilizer treatments), the simulated cumulative 

N2O emissions ranged from 0.02 to 0.17 kg N ha
-1

. Plots receiving AN presented similar simulated 

N2O emissions across seasons, with somewhat higher values in N170 (0.10−0.11 kg N ha
-1

) than in 

N90 (0.06−0.07 kg N ha
-1

) treatments (Fig. 4). The lowest simulated N2O emissions in all years were 

found in plots under GWC treatment, while emissions from plots with PPM treatment in all years 
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tended to be the highest. Additionally, the PCM treatment showed the highest variability in N2O 

emissions among seasons.  

Simulated NH3 emissions from organic fertilizers were similar to those obtained for the 

mineral fertilizer treatments (ammonium nitrate), and in general lower than expected. In 2015, NH3 

emissions were 29.9% on average and 34.3% lower than in 2016 and 2017, respectively.  

4. Discussion 

The CERES-Maize model was first calibrated and validated in the nemoral climate using the 

locally measured grain maize yield under different fertilizer types and contrasting meteorological 

growing seasons. Experimental results showed a relatively wide range of yield levels, resulting both 

from year-to-year weather variability and contrasting fertilization rates and types. This study refers to 

the region which represents a current northern frontier of grain maize expansion where the best 

management practices are still to be defined, thus simulation of maize growth is indispensable for 

exploring promising options to achieve economically and environmentally sustainable production. 

The results of this study indicate that a substantial yield gap exists in the region as the maize GY in 

the experiment were higher by 34.5, 22.2, and 29.3% than the actual yields reported by Lithuanian 

farmers for 2015, 2016, and 2017, respectively (FAOSTAT, 2019). The calibration and validation 

results indicated lower simulated grain yield errors than reported by Malik et al., (2019) under 

Mediterranean conditions (RMSE from 0.533 to 0.811 t ha
−1

) and Yang et al. (2009) in North Carolina 

environments (average RMSE of 0.701 t ha
−1

). Regarding the maximum LAI the results of our study 

are in agreement with results found by Dechmi et al. (2010), where the model results showed less 

accuracy than yield prediction. The maximum LAI results also agree in part with Soler et al. (2007).  

A specific aspect of this study was the involvement of organic fertilizers from different 

sources with contrasting characteristics and mineralization rates of organic N. As a result, in the 

experiment a wide range of N uptake was obtained notwithstanding that the same amount of total N 

(170 kg ha
-1

) was applied. This explains the GY variability between treatments within each considered 

year. Unfavourable weather conditions (mainly low temperature and water shortage) in 2015 resulted 

in rather low TAB (simulated values ranged from 12.45 to 13.92 t ha
-1

) and N uptake (range from 
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116.2 to 145.6 kg ha
-1

). The calibration and validation results of N uptake; (RMSE from 15.40 to 

18.11 kg N ha
-1

) and SMN (RMSE from 14.75 to 17.39 kg N ha
-1

) using CERES-Maize under the 

application of different mineral and organic fertilizers are better than others studies performed under 

different experimental conditions (Malik and Dechmi, 2019; Yakoub et al., 2017). In fact, working 

with data of an irrigated area in Spain, Malik and Dechmi (2019) reported the worst statistics values 

in simulating N uptake (RMSE= 43 kg N ha
-1 

in grain and 59 kg N ha
-1 

in vegetative biomass) and 

SMN (RMSE= 53 kg N ha
-1

). Yakoub et al. (2017) also obtained lower adjustment in predicting N 

uptake in Spain (RMSE= 41 kg N ha
-1

).  

Under the experimental conditions, our results suggest that significant N leaching beyond the 

rooting zone is unlikely to occur in late spring or early summer, in particular during the period of 

intensive vegetative growth of the maize, due to the high evapotranspiration and a the soil depth 

associated with deep rooting. According to the model estimation in all three considered seasons, 

nitrate leaching losses during the period from May to July were low irrespective of N fertilizer type. 

This behaviour is in agreement with the outcomes of Øygarden et al. (2014) who showed that N 

runoff and leaching losses in the Nordic–Baltic region during the summer season are low even after 

high precipitation events. Yet, high rainfall events in spring after sowing and fertilization can result in 

substantial N losses with water percolation below the root zone and also surface runoff might occur. 

However, during the maize reproductive period from August to October (R1−R6 growth stages) 

leaching losses of N03-N can be noticeable if rainfall during this period exceeds ≈ 170 mm. During 

the reproductive period, N uptake from the soil is reduced, even if the temperature regime is 

favourable, because a larger part of N for grain yield formation is remobilized from vegetative organs. 

In general, the results of simulated nitrate leaching during the maize growth cycle are in line with 

findings reported by other authors claiming that nitrate leaching into deeper soil horizons depends on 

water flux densities during the growing period (Godwin and Jones, 1991). Relatively low differences 

in N leaching among treatments with AN and organic fertilizers as found in our study are somewhat 

unexpected, because AN is a very soluble fertilizer and N leaching can reach substantial levels within 

a short period of time (Wang et al., 2019). 
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Simulation of soil mineral N remaining at harvest after application of 170 kg ha
-1

 as for the 

AN170 treatment produced similar or slightly higher values than experimentally measured. However, 

the model in most cases underestimated SMN content when organic fertilizers were applied. SMN is a 

relevant indicator for both crop N nutrition status and water pollution risk assessment. The majority of 

treatments the residual SMN content at harvest in the dry conditions of 2015 was higher than in 

corresponding treatments of the wetter years in 2016 and 2017. This indicates that after a droughty 

season, the risk of N leaching during the non-growing period can be higher because a substantial part 

of SMN is inevitably lost during the autumn-winter period. 

Simulated N2O emissions, if compared to the IPPC Tier 1 default value of 1% of the N input 

from fertilizer, can be rated as rather low. However, similar results to ours were reported in studies 

investigating organic fertilizers (e.g., Bell et al., 2016). Unfortunately, there are no measured N2O 

emission data available from arable soils in Lithuania to rank or justify our results. In any case, 

simulated N2O emissions should be carefully interpreted because of multiple sources of uncertainty 

(Zimmermann et al., 2018), and therefore, calibration of modelled N2O fluxes against measured data 

would be advantageous. Finally, our modelling study indicated rather low NH3 emissions, which can 

be a result of the method of fertilizer application as the organic fertilizers were incorporated into soil 

immediately after application. It is a well-known fact that immediate incorporation of manure into the 

soil is a highly effective measure for reducing NH3 emissions (Webb et al., 2010). Although, there is a 

lack of experimental evidence of NH3 emissions from fertilizer application in Lithuania, globally a 

large number of experimental data on NH3 emissions from livestock manure applied to fields have 

been collected, and there is a consensus that manure is the largest source of NH3 emissions to the 

atmosphere (Hafner et al., 2018). Yet accurate estimations of these emissions under specific local 

conditions and comparisons, for example between locations or application of manure from different 

sources, can be challenging because of a lack of supporting data and standard protocols for their use.  

Estimates of relevant N transformation pathways obtained by modelling have provided 

important insight into the soil N cycle and potential losses after application of synthetic and organic 

fertilizers, solely or in combination. Application of PCM and GWC resulted in much lower N uptake 
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and SMN than that of AN application, while treatments with application of PPM or AN combined 

with organic fertilizers provided intermediate results. However, the differences in estimates of N 

losses among treatments during the growing season are not so contrasting. Thus, lower crop N uptake 

was not associated with proportionately reduced N losses as expected. Estimates of N budget are a 

good starting point for a discussion on replacing synthetic fertilizers with N from organic sources. In 

general, quantification of N losses via leaching and emission is a complicated task in field 

experiments and state-of-the-art modelling seems to be a powerful tool to estimate these losses. 

However, even if subject to quite large uncertainties, the estimations are quite important in order to 

draw stakeholders’ attention to best N management practices. 

Estimates from our study can serve as a partial basis for policy makers and assist farmers in 

optimizing maize N fertilization in the nemoral zone, where no information about the best 

management practices yet available. The segregation of livestock and crop production intensified in 

the recent years and hindered the potential benefits of a circular nutrient management, thus return to 

crop-livestock integration can be beneficial, although more comprehensive assessment is needed 

(Noordwijk and Brussaard, 2014) due to the heterogeneity of organic fertilizers. According to 

McCrackin et al. (2018), even partial redistribution of manure from intensive animal farming areas to 

arable land, together with improved agronomic practices, can reduce nitrogen and phosphorus losses, 

and will have ameliorating effects on eutrophication conditions of the sensitive environment of the 

Baltic Sea. In this context, the outcomes of our study can provide relevant information in searching 

for alternative ways to mitigate environment pollution from agroecosystems.  

Although, our study demonstrated that the CERES-Maize model can successfully capture 

weather and N management effects on crop development variations relevant for maize yield formation 

under the nemoral climate zone, additional efforts are needed to verify and to fine-tune the model to 

comprehensively simulate the N cycle, losses to the surface and groundwater and air in particular.  

5. Conclusions 

This study is a first attempt to estimate and compare via modelling major N cycle parameters 

in a grain maize crop under synthetic and different organic fertilizers solely or in combination, in the 
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nemoral zone, which is north of the traditional maize growing areas. Very good agreement between 

simulated and measured maize total aboveground biomass and grain yields indicate that the CERES-

Maize model can successfully capture effects of weather and N management factors relevant for 

maize yield formation under the favourable and sub-optimal (drier) weather conditions. Additionally, 

reasonable fits between simulated and experimental values of N uptake and soil mineral nitrogen were 

found and the model identified well the differences among treatments, with lower N uptake and soil 

mineral nitrogen in pelletized cattle manure and green waste compost than those for ammonium 

nitrate, with intermediate results in pelletized poultry manure and ammonium nitrate combined with 

organic fertilizers. The model provided reasonable simulation of the soil water content and 

temperature dynamics over the course of the maize growing seasons, which is an essential 

precondition for reliable prediction of the N cycling pattern. The relevant estimates of N losses over 

the course of the maize growing seasons via leaching depends on water flux intensity during the 

growing period. However, lower crop N uptake was not ultimately associated with proportionately 

reduced N losses as expected. In general, the results of this study indicate that the calibrated CERES-

Maize model can be used for maize yield prediction under nemoral climate conditions. Regarding N 

losses via leaching and gaseous emission, even if their estimation in this study is subject to quite large 

uncertainties, the resulting values are quite important in order to draw stakeholders’ attention to best 

N management practices. However, future research should experimentally verify the capacity of this 

model to provide a comprehensive simulation of the N cycle and N losses under various fertilization, 

in particular organic. 
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        Figure 1. Observed and simulated total above ground biomass (TAB), grain yield (GY), 

maximum leaf area index (LAI), total N uptake and soil mineral nitrogen (SMN) 0−60 cm at harvest 

of 8 experimental treatments in three years. The black line represents the 1:1 relationship. 
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Figure 2. Observed (dots) and simulated (lines) soil water content (θ, cm
3
 cm

-3
) at 10 and 60 cm 

depths and soil temperature at 10 cm depth in AN170 plots for the 2015−2017 years.  SSAT is the 

saturated soil water content, LL is the soil water lower limit. 
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Figure 3. Simulated cumulative N leaching (kg N ha
-1

) out of the soil profile at 155 cm depth for the 

different fertilizer treatments and years. 

 

 

 

Figure 4. Simulated cumulative N20 and NH3 emissions in the different fertilizer treatments and years 

(2015−2017). 
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Table 1. Soil agrochemical characteristics determined before maize planting of each considered year: 

pH, soil organic carbon content, plant available phosphorus (P2O5), plant available potassium (K2O), 

total nitrogen after Kjeldahl (total N), nitrate nitrogen (NO3
-
-N), and ammonium nitrogen (NH4

+
-N). 

Soil characteristic 2015 2016 2017 

pH (1 N KCl extraction), 0−20 cm 6.85 6.70 6.20 

P2O5 (mg kg
-1

;Egner-Riehm-Domingo (A–L)), 0−20 cm 154 129 85 

K2O (mg kg
-1

;Egner-Riehm-Domingo (A–L)), 0−20 cm 138 140 154 

Soil organic carbon (%; Tjurin), 0−20 cm 1.08 1.04 0.99 

Total N (%; Kjeldahl), 0−20 cm 0.109 0.110 0.103 

NO3
-
-N (mg kg

-1
), 0−30 cm 8.4 9.4 4.2 

NO3
-
-N (mg kg

-1
), 30−60 cm 4.3 4.9 2.2 

NH4
+
-N (mg kg

-1
), 0−30 cm 1.8 3.7 2.5 

NH4
+
-N (mg kg

-1
), 30−60 cm 1.2 2.7 1.8 

 

Table 2. Fertilization rates of nitrogen, phosphorus, and potassium applied in the different treatments 

(average 2015−2017). 

Treatments Codes 
  Nutrient rate (kg ha

-1
) 

 

N 

 

P 

 

K 

Ammonium nitrate N90 + P + K  (AN90) 

 

90 

 

45 

 

90 

Ammonium nitrate N170 + P + K  (AN170) 

 

170 

 

85 

 

170 

Pelletized cattle manure N170  (PCM) 

 

170 

 

90 

 

318.1 

Ammonium nitrate N90 + pelletized cattle manure N80   (AN + PCM) 

 

170 

 

42.3 

 

149.7 

Pelletized poultry manure N170  (PPM) 

 

170 

 

78.3 

 

250.6 

Ammonium nitrate N90 + pelletized poultry manure N80  (AN+PPM) 

 

170 

 

36.8 

 

118 

Green waste compost N170  (GWC) 

 

170 

 

93.7 

 

220.4 

Ammonium nitrate N90 + Green waste compost N80  (AN + GWC)   170   44.1   103.7 

 

Table 3. Chemical characteristics (dry matter basis) of pelletized cattle manure (PCM), pelletized 

poultry manure (PPM), and green waste compost (GWC) for the considered growing seasons 2015, 

2016, and 2017. 

    PCM   PPM   GWC 

  

 
2015 2016 2017 

 
2015 2016 2017 

 

2015 2016 2017 

pH 

 

9.5 9.2 9.6 

 

6.6 6.0 6.4 

 

8.4 8.0 8.8 

Dry matter (%) 

 

82.3

0 

81.0

5 

85.3

7 

 

81.1

0 

78.1

3 

83.2

9 

 

70.3

0 

84.4

9 

59.7

4 

             
Total nitrogen (N) (%) 

 

2.80 3.04 2.49 

 

4.70 5.14 4.39 

 

0.60 0.59 0.60 

Total phosphorus (P205) 

(%) 

 

1.20 0.75 1.45 

 

2.40 0.88 3.52 

 

0.30 0.17 0.40 
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Total potassium (K20) (%)   7.10 4.63 7.17   3.60 2.78 3.22   0.80 0.68 0.48 

 

Table 4. Clay content (SLCL), silt content (SLSI), lower limit of water holding capacity (LL), drained 

upper limit (DUL), soil saturation (SSAT), soil bulk density (SBDM), saturated hydraulic conductivity 

(SSKS), and soil root growth factor (SRGF) of each soil horizon.  

Horizon 

description 

  
SLCL    

(%) 

  SLSI 

(%) 

  LL          

(cm
3
 

cm
-3

) 

  DUL            

(cm3 

cm-3) 

  SSAT            

(cm3 

cm-3) 

  SBDM             

(g cm-3) 

  SSKS                   

(cm day-

1) 

  
SRGF 

                

Ap1 (0−30 cm) 

 

13.1 

 

31.9 

 

0.023 

 

0.289 

 

0.300 

 

1.81 

 

0.6 

 

1 

E2 (30−60 cm) 

 

6.2 

 

23.4 

 

0.069 

 

0.354 

 

0.358 

 

1.70 

 

2.2 

 

0.407 

Bt3 (60−80 cm) 

 

29.3 

 

35.7 

 

0.122 

 

0.317 

 

0.342 

 

1.73 

 

6.1 

 

0.247 

B4 (80−110 cm) 

 

19.9 

 

22.6 

 

0.083 

 

0.343 

 

0.351 

 

1.68 

 

62.0 

 

0.15 

Ck5 (110−155 cm)   14   31.6   0.062   0.234   0.245   1.96   3.2   0 

 

1: mineral surface horizon with an accumulation of humified organic matter.  

2: mineral horizon in which the main feature is loss of silicate clay. 

3: mineral illuvial horizon with accumulation of silicate clay. 

4: mineral illuvial horizon. 

5: initial horizon with accumulation of pedogenic carbonates.  

 

Table 5. Best genetic coefficients, nitrogen, and root parameters values obtained for maize cv. RGT 

AGIRAXX after CERES-Maize calibration using both 2015 and 2016 experimental data. 

Parameter Definition Value 

Genotype parameters 

P1 
Growing Degree Days (GDD) from seedling emergence to the end of the juvenile phase 

(
o
C) 128 

P2 Photoperiod sensitivity (hr
-1

) 0.2924 

P5 Growing Degree Days (GDD) from silking to physiological maturity (
o
C) 620 

G2 Maximum possible number of kernels per plant  900 

G3 Kernel filling rate (mg m
-2

 d
-1

) 7.5 

PHINT 
Phyllochron interval, the interval in thermal time between successive leaf tip 

appearances (
o
C) 36.75 

Ecotype parameters 

TBASE Base temperature below which no development occurs (
o
C) 8 

RUE Radiation use efficiency (g plant dry matter MJ
-1

) 3.7 

Nitrogen parameters 

TMNC Plant top minimum N concentration (g N g
-1

 dry matter) 0.0045 

TANCE Nitrogen content in above-ground biomass at emergence (g N g
-1

 dry matter) 0.044 
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RCNP Root critical nitrogen concentration (g N g
-1

 root dry weight) 0.0107 

RANCE Root N content at emergence (g N g
-1

 root) 0.024 

CTCNP1 Maximum value for critical tissue N concentration  1.42 

CTCNP2 Coefficient for change in concentration with growth stage  0.255 

Root parameters 

PORM Minimum porosity required for supplying oxygen to roots for optimum growth 0.06 

RLWR Root length to weight ratio 0.96 

 

Table 6. CERES-Maize model performance (R
2
, RMSE, BIAS) of total aboveground biomass (TAB), 

grain yield (GY), leaf area index (LAI), total N uptake, and residual soil mineral N (SMN) for the 

calibration (2015−2016) and the validation (2017) periods. 

  
R

2
   RMSE   BIAS 

2015 2016 2017   2015 2016 2017   2015 2016 2017 

TAB (t ha
-1

) 
0.909*

* 

0.829*

* 

0.886*

*  
0.697 0.779 0.830 

 
-0.148 

-

0.624 
-0.554 

GY (t ha
-1

) 
0.895*

* 

0.938*

* 

0.851*

*  
0.203 0.506 0.203 

 
0.109 

-

0.248 
-0.097 

LAI  0.468 0.617* 0.566*  
0.207 0.227 0.128 

 
-0.185 0.201 -0.070 

N uptake (kg N ha
-

1
) 0.653* 

0.794*

* 0.607*  

16.23

4 

15.39

9 

18.11

6  
11.538 

-

6.463 

-

14.200 

SMN (kg N ha
-1

) 
0.839*

* 0.453 0.641* 
  

17.39

5 

14.75

0 

16.45

4 
  

-

14.923 

-

8.804 

-

11.588 

* - p <0.05; **- p<0.01 

 

 


