000892286 001__ 892286
000892286 005__ 20210628150953.0
000892286 0247_ $$2doi$$a10.1029/2021GL092756
000892286 0247_ $$2ISSN$$a0094-8276
000892286 0247_ $$2ISSN$$a1944-8007
000892286 0247_ $$2Handle$$a2128/27859
000892286 0247_ $$2altmetric$$aaltmetric:104992087
000892286 0247_ $$2WOS$$aWOS:000658600300035
000892286 037__ $$aFZJ-2021-01996
000892286 041__ $$aEnglish
000892286 082__ $$a550
000892286 1001_ $$00000-0001-6376-7397$$aBanyard, T. P.$$b0$$eCorresponding author
000892286 245__ $$aAtmospheric Gravity Waves in Aeolus Wind Lidar Observations
000892286 260__ $$aHoboken, NJ$$bWiley$$c2021
000892286 3367_ $$2DRIVER$$aarticle
000892286 3367_ $$2DataCite$$aOutput Types/Journal article
000892286 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622047743_1381
000892286 3367_ $$2BibTeX$$aARTICLE
000892286 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892286 3367_ $$00$$2EndNote$$aJournal Article
000892286 520__ $$aAeolus is the first Doppler wind lidar in space. It provides unique high‐resolution measurements of horizontal wind in the sparsely‐observed upper‐troposphere/lower‐stratosphere (UTLS), with global coverage. In this study, Aeolus’ ability to resolve atmospheric gravity waves (GWs) is demonstrated. The accurate representation of these small‐scale waves is vital to properly simulate dynamics in global weather and climate models. In a case study over the Andes, Aeolus GW measurements show coherent phase structure from the surface to the lower stratosphere, with wind perturbations > 10 ms−1, a vertical wavelength ∼8 km and an along‐track horizontal wavelength ∼900 km. Good agreement is found between Aeolus and colocated satellite, ground‐based lidar and reanalysis data sets for this example. Our results show that data from satellites of this type can provide unique information on GW sources and propagation in the UTLS, filling a key knowledge gap that underlies known major deficiencies in weather and climate modelling.
000892286 536__ $$0G:(DE-HGF)POF4-511$$a511 - Enabling Computational- & Data-Intensive Science and Engineering (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000892286 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892286 7001_ $$00000-0003-2496-953X$$aWright, C. J.$$b1
000892286 7001_ $$00000-0003-4377-2038$$aHindley, N. P.$$b2
000892286 7001_ $$00000-0001-8127-1918$$aHalloran, G.$$b3
000892286 7001_ $$0P:(DE-HGF)0$$aKrisch, I.$$b4
000892286 7001_ $$00000-0002-5891-242X$$aKaifler, B.$$b5
000892286 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b6
000892286 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2021GL092756$$n10$$pe2021GL092756$$tGeophysical research letters$$v48$$x1944-8007$$y2021
000892286 8564_ $$uhttps://juser.fz-juelich.de/record/892286/files/2021GL092756.pdf$$yOpenAccess
000892286 909CO $$ooai:juser.fz-juelich.de:892286$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b6$$kFZJ
000892286 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000892286 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000892286 9141_ $$y2021
000892286 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000892286 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000892286 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892286 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000892286 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2019$$d2021-01-29
000892286 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger
000892286 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000892286 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000892286 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000892286 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892286 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000892286 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000892286 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000892286 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000892286 920__ $$lyes
000892286 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000892286 980__ $$ajournal
000892286 980__ $$aVDB
000892286 980__ $$aUNRESTRICTED
000892286 980__ $$aI:(DE-Juel1)JSC-20090406
000892286 9801_ $$aFullTexts