000892286 001__ 892286 000892286 005__ 20210628150953.0 000892286 0247_ $$2doi$$a10.1029/2021GL092756 000892286 0247_ $$2ISSN$$a0094-8276 000892286 0247_ $$2ISSN$$a1944-8007 000892286 0247_ $$2Handle$$a2128/27859 000892286 0247_ $$2altmetric$$aaltmetric:104992087 000892286 0247_ $$2WOS$$aWOS:000658600300035 000892286 037__ $$aFZJ-2021-01996 000892286 041__ $$aEnglish 000892286 082__ $$a550 000892286 1001_ $$00000-0001-6376-7397$$aBanyard, T. P.$$b0$$eCorresponding author 000892286 245__ $$aAtmospheric Gravity Waves in Aeolus Wind Lidar Observations 000892286 260__ $$aHoboken, NJ$$bWiley$$c2021 000892286 3367_ $$2DRIVER$$aarticle 000892286 3367_ $$2DataCite$$aOutput Types/Journal article 000892286 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622047743_1381 000892286 3367_ $$2BibTeX$$aARTICLE 000892286 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000892286 3367_ $$00$$2EndNote$$aJournal Article 000892286 520__ $$aAeolus is the first Doppler wind lidar in space. It provides unique high‐resolution measurements of horizontal wind in the sparsely‐observed upper‐troposphere/lower‐stratosphere (UTLS), with global coverage. In this study, Aeolus’ ability to resolve atmospheric gravity waves (GWs) is demonstrated. The accurate representation of these small‐scale waves is vital to properly simulate dynamics in global weather and climate models. In a case study over the Andes, Aeolus GW measurements show coherent phase structure from the surface to the lower stratosphere, with wind perturbations > 10 ms−1, a vertical wavelength ∼8 km and an along‐track horizontal wavelength ∼900 km. Good agreement is found between Aeolus and colocated satellite, ground‐based lidar and reanalysis data sets for this example. Our results show that data from satellites of this type can provide unique information on GW sources and propagation in the UTLS, filling a key knowledge gap that underlies known major deficiencies in weather and climate modelling. 000892286 536__ $$0G:(DE-HGF)POF4-511$$a511 - Enabling Computational- & Data-Intensive Science and Engineering (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000892286 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000892286 7001_ $$00000-0003-2496-953X$$aWright, C. J.$$b1 000892286 7001_ $$00000-0003-4377-2038$$aHindley, N. P.$$b2 000892286 7001_ $$00000-0001-8127-1918$$aHalloran, G.$$b3 000892286 7001_ $$0P:(DE-HGF)0$$aKrisch, I.$$b4 000892286 7001_ $$00000-0002-5891-242X$$aKaifler, B.$$b5 000892286 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b6 000892286 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2021GL092756$$n10$$pe2021GL092756$$tGeophysical research letters$$v48$$x1944-8007$$y2021 000892286 8564_ $$uhttps://juser.fz-juelich.de/record/892286/files/2021GL092756.pdf$$yOpenAccess 000892286 909CO $$ooai:juser.fz-juelich.de:892286$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000892286 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b6$$kFZJ 000892286 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000892286 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000892286 9141_ $$y2021 000892286 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29 000892286 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000892286 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000892286 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29 000892286 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2019$$d2021-01-29 000892286 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-29$$wger 000892286 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000892286 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29 000892286 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29 000892286 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000892286 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29 000892286 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29 000892286 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29 000892286 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29 000892286 920__ $$lyes 000892286 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000892286 980__ $$ajournal 000892286 980__ $$aVDB 000892286 980__ $$aUNRESTRICTED 000892286 980__ $$aI:(DE-Juel1)JSC-20090406 000892286 9801_ $$aFullTexts