001     892286
005     20260123002526.0
024 7 _ |2 doi
|a 10.1029/2021GL092756
024 7 _ |2 ISSN
|a 0094-8276
024 7 _ |2 ISSN
|a 1944-8007
024 7 _ |2 Handle
|a 2128/27859
024 7 _ |2 altmetric
|a altmetric:104992087
024 7 _ |2 WOS
|a WOS:000658600300035
037 _ _ |a FZJ-2021-01996
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 0000-0001-6376-7397
|a Banyard, T. P.
|b 0
|e Corresponding author
245 _ _ |a Atmospheric Gravity Waves in Aeolus Wind Lidar Observations
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2021
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1622047743_1381
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Aeolus is the first Doppler wind lidar in space. It provides unique high‐resolution measurements of horizontal wind in the sparsely‐observed upper‐troposphere/lower‐stratosphere (UTLS), with global coverage. In this study, Aeolus’ ability to resolve atmospheric gravity waves (GWs) is demonstrated. The accurate representation of these small‐scale waves is vital to properly simulate dynamics in global weather and climate models. In a case study over the Andes, Aeolus GW measurements show coherent phase structure from the surface to the lower stratosphere, with wind perturbations > 10 ms−1, a vertical wavelength ∼8 km and an along‐track horizontal wavelength ∼900 km. Good agreement is found between Aeolus and colocated satellite, ground‐based lidar and reanalysis data sets for this example. Our results show that data from satellites of this type can provide unique information on GW sources and propagation in the UTLS, filling a key knowledge gap that underlies known major deficiencies in weather and climate modelling.
536 _ _ |0 G:(DE-HGF)POF4-511
|a 511 - Enabling Computational- & Data-Intensive Science and Engineering (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(DE-Juel-1)SDLCS
|a Simulation and Data Lab Climate Science
|c SDLCS
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 0000-0003-2496-953X
|a Wright, C. J.
|b 1
700 1 _ |0 0000-0003-4377-2038
|a Hindley, N. P.
|b 2
700 1 _ |0 0000-0001-8127-1918
|a Halloran, G.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Krisch, I.
|b 4
700 1 _ |0 0000-0002-5891-242X
|a Kaifler, B.
|b 5
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, L.
|b 6
773 _ _ |0 PERI:(DE-600)2021599-X
|a 10.1029/2021GL092756
|n 10
|p e2021GL092756
|t Geophysical research letters
|v 48
|x 1944-8007
|y 2021
856 4 _ |u https://juser.fz-juelich.de/record/892286/files/2021GL092756.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892286
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich
|b 6
|k FZJ
913 0 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
914 1 _ |y 2021
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b GEOPHYS RES LETT : 2019
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)3001
|2 StatID
|a DEAL Wiley
|d 2021-01-29
|w ger
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2021-01-29
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2021-01-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21