000892288 001__ 892288
000892288 005__ 20210902140218.0
000892288 0247_ $$2doi$$a10.3389/fbioe.2020.621213
000892288 0247_ $$2Handle$$a2128/27739
000892288 0247_ $$2altmetric$$aaltmetric:98044658
000892288 0247_ $$2pmid$$a33585420
000892288 0247_ $$2WOS$$aWOS:000614087900001
000892288 037__ $$aFZJ-2021-01997
000892288 082__ $$a570
000892288 1001_ $$0P:(DE-HGF)0$$aMaeda, Tomoya$$b0
000892288 245__ $$aRelevance of NADH Dehydrogenase and Alternative Two-Enzyme Systems for Growth of Corynebacterium glutamicum With Glucose, Lactate, and Acetate
000892288 260__ $$aLausanne$$bFrontiers Media$$c2021
000892288 3367_ $$2DRIVER$$aarticle
000892288 3367_ $$2DataCite$$aOutput Types/Journal article
000892288 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630575399_13118
000892288 3367_ $$2BibTeX$$aARTICLE
000892288 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892288 3367_ $$00$$2EndNote$$aJournal Article
000892288 500__ $$aBiotechnologie 1
000892288 520__ $$aThe oxidation of NADH with the concomitant reduction of a quinone is a crucial step in the metabolism of respiring cells. In this study, we analyzed the relevance of three different NADH oxidation systems in the actinobacterial model organism Corynebacterium glutamicum by characterizing defined mutants lacking the non-proton-pumping NADH dehydrogenase Ndh (Δndh) and/or one of the alternative NADH-oxidizing enzymes, L-lactate dehydrogenase LdhA (ΔldhA) and malate dehydrogenase Mdh (Δmdh). Together with the menaquinone-dependent L-lactate dehydrogenase LldD and malate:quinone oxidoreductase Mqo, the LdhA-LldD and Mdh-Mqo couples can functionally replace Ndh activity. In glucose minimal medium the Δndh mutant, but not the ΔldhA and Δmdh strains, showed reduced growth and a lowered NAD+/NADH ratio, in line with Ndh being the major enzyme for NADH oxidation. Growth of the double mutants ΔndhΔmdh and ΔndhΔldhA, but not of strain ΔmdhΔldhA, in glucose medium was stronger impaired than that of the Δndh mutant, supporting an active role of the alternative Mdh-Mqo and LdhA-LldD systems in NADH oxidation and menaquinone reduction. In L-lactate minimal medium the Δndh mutant grew better than the wild type, probably due to a higher activity of the menaquinone-dependent L-lactate dehydrogenase LldD. The ΔndhΔmdh mutant failed to grow in L-lactate medium and acetate medium. Growth with L-lactate could be restored by additional deletion of sugR, suggesting that ldhA repression by the transcriptional regulator SugR prevented growth on L-lactate medium. Attempts to construct a ΔndhΔmdhΔldhA triple mutant were not successful, suggesting that Ndh, Mdh and LdhA cannot be replaced by other NADH-oxidizing enzymes in C. glutamicum.
000892288 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000892288 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892288 7001_ $$0P:(DE-Juel1)128970$$aKoch-Koerfges, Abigail$$b1
000892288 7001_ $$0P:(DE-Juel1)128943$$aBott, Michael$$b2$$eCorresponding author
000892288 773__ $$0PERI:(DE-600)2719493-0$$a10.3389/fbioe.2020.621213$$gVol. 8, p. 621213$$p621213$$tFrontiers in Bioengineering and Biotechnology$$v8$$x2296-4185$$y2021
000892288 8564_ $$uhttps://juser.fz-juelich.de/record/892288/files/fbioe-08-621213.pdf$$yOpenAccess
000892288 909CO $$ooai:juser.fz-juelich.de:892288$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000892288 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich$$b2$$kFZJ
000892288 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000892288 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000892288 9141_ $$y2021
000892288 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-31
000892288 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892288 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT BIOENG BIOTECH : 2019$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892288 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-31
000892288 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000892288 920__ $$lyes
000892288 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000892288 980__ $$ajournal
000892288 980__ $$aVDB
000892288 980__ $$aI:(DE-Juel1)IBG-1-20101118
000892288 980__ $$aUNRESTRICTED
000892288 9801_ $$aFullTexts