000892289 001__ 892289
000892289 005__ 20220930130315.0
000892289 0247_ $$2doi$$a10.3390/land10040423
000892289 0247_ $$2Handle$$a2128/27721
000892289 0247_ $$2altmetric$$aaltmetric:104319684
000892289 0247_ $$2WOS$$aWOS:000643218800001
000892289 037__ $$aFZJ-2021-01998
000892289 082__ $$a630
000892289 1001_ $$0P:(DE-Juel1)168334$$aMoradi, Shirin$$b0
000892289 245__ $$aCombining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability
000892289 260__ $$aBasel$$bMDPI$$c2021
000892289 3367_ $$2DRIVER$$aarticle
000892289 3367_ $$2DataCite$$aOutput Types/Journal article
000892289 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1652094630_3302
000892289 3367_ $$2BibTeX$$aARTICLE
000892289 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892289 3367_ $$00$$2EndNote$$aJournal Article
000892289 520__ $$aRainfall-induced landslides are a disastrous natural hazard causing loss of life and significant damage to infrastructure, farmland and housing. Hydromechanical models are one way to assess the slope stability and to predict critical combinations of groundwater levels, soil water content and precipitation. However, hydromechanical models for slope stability evaluation require knowledge about mechanical and hydraulic parameters of the soils, lithostratigraphy and morphology. In this work, we present a multi-method approach of site characterization and investigation in combination with a hydromechanical model for a landslide-prone hillslope near Bonn, Germany. The field investigation was used to construct a three-dimensional slope model with major geological units derived from drilling and refraction seismic surveys. Mechanical and hydraulic soil parameters were obtained from previously published values for the study site based on laboratory analysis. Water dynamics were monitored through geoelectrical monitoring, a soil water content sensor network and groundwater stations. Historical data were used for calibration and validation of the hydromechanical model. The well-constrained model was then used to calculate potentially hazardous precipitation events to derive critical thresholds for monitored variables, such as soil water content and precipitation. This work introduces a potential workflow to improve numerical slope stability analysis through multiple data sources from field investigations and outlines the usage of such a system with respect to a site-specific early-warning system.
000892289 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000892289 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892289 7001_ $$00000-0002-2139-2520$$aHeinze, Thomas$$b1
000892289 7001_ $$00000-0003-0795-9815$$aBudler, Jasmin$$b2
000892289 7001_ $$00000-0001-9947-4887$$aGunatilake, Thanushika$$b3
000892289 7001_ $$00000-0002-3709-1378$$aKemna, Andreas$$b4
000892289 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b5$$eCorresponding author
000892289 773__ $$0PERI:(DE-600)2682955-1$$a10.3390/land10040423$$gVol. 10, no. 4, p. 423 -$$n4$$p423 -$$tLand$$v10$$x2073-445X$$y2021
000892289 8564_ $$uhttps://juser.fz-juelich.de/record/892289/files/Invoice_MDPI_land-1182935.pdf
000892289 8564_ $$uhttps://juser.fz-juelich.de/record/892289/files/Moradi2021_Land.pdf$$yOpenAccess
000892289 8767_ $$81182935$$92021-04-14$$d2021-05-18$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200167160
000892289 909CO $$ooai:juser.fz-juelich.de:892289$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000892289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168334$$aForschungszentrum Jülich$$b0$$kFZJ
000892289 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b5$$kFZJ
000892289 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000892289 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000892289 9141_ $$y2021
000892289 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000892289 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000892289 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2020-09-05
000892289 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892289 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2020-09-05
000892289 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-05
000892289 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-05
000892289 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-05
000892289 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892289 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-05
000892289 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-05
000892289 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000892289 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000892289 920__ $$lyes
000892289 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000892289 9801_ $$aFullTexts
000892289 980__ $$ajournal
000892289 980__ $$aVDB
000892289 980__ $$aI:(DE-Juel1)IBG-3-20101118
000892289 980__ $$aUNRESTRICTED
000892289 980__ $$aAPC