000892292 001__ 892292
000892292 005__ 20240712113023.0
000892292 0247_ $$2doi$$a10.1007/s00138-021-01191-9
000892292 0247_ $$2Handle$$a2128/27923
000892292 0247_ $$2altmetric$$aaltmetric:43855718
000892292 0247_ $$2WOS$$aWOS:000653779200001
000892292 037__ $$aFZJ-2021-02001
000892292 041__ $$aEnglish
000892292 082__ $$a004
000892292 1001_ $$0P:(DE-HGF)0$$aDeitsch, sergiu$$b0$$eCorresponding author
000892292 245__ $$aSegmentation of Photovoltaic Module Cells in Electroluminescence Images
000892292 260__ $$aHeidelberg$$bSpringer$$c2021
000892292 3367_ $$2DRIVER$$aarticle
000892292 3367_ $$2DataCite$$aOutput Types/Journal article
000892292 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623242060_30584
000892292 3367_ $$2BibTeX$$aARTICLE
000892292 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892292 3367_ $$00$$2EndNote$$aJournal Article
000892292 520__ $$aHigh resolution electroluminescence (EL) images captured in the infrared spectrum allow to visually and non-destructively inspect the quality of photovoltaic (PV) modules. Currently, however, such a visual inspection requires trained experts to discern different kinds of defects, which is time-consuming and expensive. Automated segmentation of cells is therefore a key step in automating the visual inspection workflow. In this work, we propose a robust automated segmentation method for extraction of individual solar cells from EL images of PV modules. This enables controlled studies on large amounts of data to understanding the effects of module degradation over time—a process not yet fully understood. The proposed method infers in several steps a high-level solar module representation from low-level ridge edge features. An important step in the algorithm is to formulate the segmentation problem in terms of lens calibration by exploiting the plumbline constraint. We evaluate our method on a dataset of various solar modules types containing a total of 408 solar cells with various defects. Our method robustly solves this task with a median weighted Jaccard index of 94.47% and an F1 score of 97.62%, both indicating a high sensitivity and a high similarity between automatically segmented and ground truth solar cell masks.
000892292 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000892292 588__ $$aDataset connected to DataCite
000892292 7001_ $$0P:(DE-Juel1)176906$$aBuerhop-Lutz, Claudia$$b1$$ufzj
000892292 7001_ $$0P:(DE-Juel1)177942$$aSovetkin, Evgenii$$b2$$ufzj
000892292 7001_ $$0P:(DE-HGF)0$$aSteland, ansgar$$b3
000892292 7001_ $$0P:(DE-HGF)0$$aMaier, Andreas$$b4
000892292 7001_ $$0P:(DE-HGF)0$$aGallwitz, Florian$$b5
000892292 7001_ $$0P:(DE-HGF)0$$aRiess, Christian$$b6
000892292 773__ $$0PERI:(DE-600)1481698-2$$a10.1007/s00138-021-01191-9$$p84$$tMachine vision and applications$$v32$$x0932-8092$$y2021
000892292 8564_ $$uhttps://juser.fz-juelich.de/record/892292/files/Deitsch2021_Article_SegmentationOfPhotovoltaicModu.pdf$$yOpenAccess
000892292 909CO $$ooai:juser.fz-juelich.de:892292$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176906$$aForschungszentrum Jülich$$b1$$kFZJ
000892292 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177942$$aForschungszentrum Jülich$$b2$$kFZJ
000892292 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000892292 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000892292 9141_ $$y2021
000892292 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-30
000892292 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892292 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACH VISION APPL : 2019$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000892292 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892292 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000892292 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000892292 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000892292 920__ $$lyes
000892292 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000892292 9801_ $$aFullTexts
000892292 980__ $$ajournal
000892292 980__ $$aVDB
000892292 980__ $$aUNRESTRICTED
000892292 980__ $$aI:(DE-Juel1)IEK-11-20140314
000892292 981__ $$aI:(DE-Juel1)IET-2-20140314