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Abstract
High resolution electroluminescence (EL) images captured in the infrared spectrum allow to visually and non-destructively
inspect the quality of photovoltaic (PV) modules. Currently, however, such a visual inspection requires trained experts to
discern different kinds of defects, which is time-consuming and expensive. Automated segmentation of cells is therefore a
key step in automating the visual inspection workflow. In this work, we propose a robust automated segmentation method
for extraction of individual solar cells from EL images of PV modules. This enables controlled studies on large amounts of
data to understanding the effects of module degradation over time—a process not yet fully understood. The proposed method
infers in several steps a high-level solar module representation from low-level ridge edge features. An important step in the
algorithm is to formulate the segmentation problem in terms of lens calibration by exploiting the plumbline constraint. We
evaluate our method on a dataset of various solar modules types containing a total of 408 solar cells with various defects. Our
method robustly solves this task with a median weighted Jaccard index of 94.47% and an F1 score of 97.62%, both indicating
a high sensitivity and a high similarity between automatically segmented and ground truth solar cell masks.
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1 Introduction

Visual inspection of solar modules using EL imaging allows
to easily identify damage inflicted to solar panels either by
environmental influences such as hail, during the assem-
bly process, or due to prior material defects or material
aging [5,10,65,90,91,93]. The resulting defects can notably
decrease the photoelectric conversion efficiency of the mod-
ules and thus their energy yield. This can be avoided by
continuous inspection of solar modules and maintenance
of defective units. For an introduction and review of non-
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automatic processing tools for EL images, we refer to Mauk
[59].

An important step towards an automated visual inspection
is the segmentation of individual cells from the solar module.
An accurate segmentation allows to extract spatially normal-
ized solar cell images. We already used the proposed method
to develop a public dataset of solar cells images [12], which
are highly accurate training data for classifiers to predict
defects in solar modules [18,60]. In particular, the Convolu-
tional Neural Network (CNN) training is greatly simplified
when using spatially normalized samples, because CNNs are
generally able to learn representations that are only equiv-
ariant to small translations [35, pp. 335–336]. The learned
representations, however, are not naturally invariant to other
spatial deformations such as rotation and scaling [35,44,52].

The identification of solar cells is additionally required
by the international technical specification IEC TS 60904-
13 [42, Annex D] for further identification of defects on cell
level. Automated segmentation can also ease the develop-
ment of models that predict the performance of a PVmodule
based on detected or identified failure modes, or by deter-
mining the operating voltage of each cell [70]. The data
describing the cell characteristics can be fed into an elec-
tric equivalent model that allows to estimate or simulate the
current-voltage characteristic (I-V) curve [13,46,72] or even
the overall power output [47].

The appearance of PVmodules in EL images depends on a
number of different factors, which makes an automated seg-
mentation challenging. The appearance varies with the type
of semiconducting material and with the shape of individual
solar cellwafers.Also, cell cracks and other defects can intro-
ducedistracting streaks.A solar cell completely disconnected
from the electrical circuit will also appear much darker than a
functional cell. Additionally, solar modules vary in the num-
ber of solar cells and their layout, and solar cells themselves
are oftentimes subdivided by busbars into multiple segments
of different sizes. Therefore, it is desirable for a fully auto-
mated segmentation to infer both the arrangement of solar
cells within the PV module and their subdivision from EL
images alone, in a way that is robust to various disturbances.
In particular, this may ease the inspection of heterogeneous
batches of PV modules.

In this work, we assume that EL images are captured in
a manufacturing setting or under comparable conditions in a
test laboratory where field-aged modules are analyzed either
regularly or after hazards like hailstorms. Such laboratories
oftentimes require agile work processes where the equip-
ment is frequently remounted. In these scenarios, the EL
irradiation of the solar module predominates the background
irradiation, and the solar modules are captured facing the EL
camera without major perspective distortion. Thus, the geo-
metric distortions that are corrected by the proposed method
are radial lens distortion, in-plane rotation, and minor per-

spective distortions. This distinguishes the manufacturing
setting from acquisitions in the field, where PV modules
may be occluded by cables and parts of the rack, and the
perspective may be strong enough to require careful cor-
rection. However, perspective distortion also makes it more
difficult to identify defective areas (e.g., microcracks) due
to the foreshortening effect [4]. Therefore, capturing EL
images from an extreme perspective is generally not advis-
able. Specifically for manufacturing environments, however,
the proposed method yields a robust, highly accurate, and
completely automatic segmentation of solar modules into
solar cells from high resolution EL images of PV modules.

Independently of the setting, our goal is to allow for some
flexibility for the user to freely position the camera or use
zoom lenses without the need to recalibrate the camera.

With this goal in mind, a particular characteristic of the
proposed segmentation pipeline is that it does not require an
external calibration pattern. During the detection of the grid
that identifies individual solar cells, the busbars and the inter
solar cell borders are directly used to estimate lens distortion.
Avoiding the use of a separate calibration pattern also avoids
the risk of an operator error during the calibration, e.g., due
to inexperienced personnel.

A robust and fully automatic PV module segmentation
can help understanding the influence of module degradation
onmodule efficiency and power generation. Specifically, this
allows to continuously and automatically monitor the degra-
dation process, for instance, by observing the differences in
a series of solar cell images captured over a certain period of
time. The segmentation also allows to automatically create
training data for learning-based algorithms for defect classi-
fication and failure prediction.

1.1 Contributions

To the best of our knowledge, the proposed segmentation
pipeline is the firstwork to enable a fully automatic extraction
of solar cells from uncalibrated EL images of solar modules
(cf., Fig. 1b). Within the pipeline, we seek to obtain the exact
segmentation mask of each solar cell through estimation of
nonlinear and linear transformations that warp the EL image
into a canonical view. To this end, our contributions are three-
fold:

1. Joint camera lens distortion estimation and PV module
grid detection for precise solar cell region identification.

2. A robust initialization scheme for the employed lens dis-
tortion model.

3. A highly accurate pixelwise classification into active solar
cell area onmonocrystalline and polycrystalline PVmod-
ules robust to various typical defects in solar modules.
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Fig. 1 (a) An EL image of a PV module overlaid by a rectangular grid ( ) and parabolic curve grid ( ) including the busbars ( )
determined using our approach. The intersections of the rectangular grid were registered to curve grid intersections to accurately align both grids.
Notice how the rectangular grid is still not able to capture the curved surface of the solar module induced by the (weak) lens distortion that increases
especially towards the image border. Using the curve grid, we estimate the lens distortion, rectify the image and finally extract the individual cells
using the estimated module topology (b). The segmented solar cells can be used for further analysis, such as automatic defect classification or
failure prediction in PV modules. The solar cells are approximately 15.6 cm× 15.6 cm with a standard 60 cell PV module with overall dimensions
of 1 m × 1.65 m

Moreover, our method operates on arbitrary (unseen)module
layouts without prior knowledge on the layout.

1.2 Outline

The remainder of this work is organized as follows. Section
2 discusses the related work. In Sect. 3, the individual stages
of the segmentation pipeline are presented. In Sect. 4, we
evaluate the presented segmentation approach on a number
of different PV modules with respect to the segmentation
accuracy. Finally, the conclusions are given in Sect. 5.

2 Related work

The segmentation of PV modules into individual solar cells
is related to the detection of calibration patterns, such as
checkerboard patterns commonly used for calibrating intrin-
sic camera and lens parameters [29,36,41,69,79]. However,
the appearance of calibration patterns is typically perfectly
known, whereas detection of solar cells is encumbered by
various defects that are a priori unknown. Additionally, the
number of solar cells in a PV module and their layout can
vary.We also note that existing lensmodels generally assume
wide angle lenses. However, their application to standard
lenses is to our knowledge not widely studied.

To estimate the parameters of a lens distortion model,
the plumbline constraint is typically employed [11]. The

constraint exploits the fact that the projection of straight
lines under radial and tangential distortion will not be truly
straight. For example, under radial distortion, straight lines
are images as curves. For typical visual inspection tasks,
a single image is sufficient to estimate the lens distor-
tion parameters [2,16,17,20,25,78]. This can be achieved by
decoupling the intrinsic parameters of the camera from the
parameters of the lens distortion model [20].

Novel methodologies employ CNNs for various segmen-
tation tasks. Existing CNN-based segmentation tasks can
be categorized into (1) object detection, (2) semantic seg-
mentation, and (3) instance-aware segmentation. One of the
first CNN object detection architectures is Regions with
CNN features (R-CNN) [32] to learn features that are subse-
quently classified using a class-specific linear Support Vector
Machine (SVM) to generate region proposals. R-CNN learns
to simultaneously classify object proposals and refine their
spatial locations. The predicted regions, however, provide
only a coarse estimation of object’s location in terms of
bounding boxes. Girshick [31] proposed Fast Region-based
Convolutional Neural Network (Fast R-CNN) by acceler-
ating training and testing times while also increasing the
detection accuracy. Ren et al. [75] introduced Region Pro-
posal Network (RPN) that shares full-image convolutional
features with the detection network enabling nearly cost-
free region proposals. RPN is combined with Fast R-CNN
into a single network that simultaneously predicts object
bounds and estimates the probability of an object for each

123



   84 Page 4 of 23 S. Deitsch et al.

proposal. For semantic segmentation, Long et al. [56] intro-
duced Fully Convolutional Networks (FCNs) allowing for
pixelwise inference. The FCN is learned end-to-end and
pixels-to-pixels requiring appropriately labeled training data.
Particularly, in medical imaging the U-Net network architec-
ture by Ronneberger et al. [77] has been successfully applied
for various segmentation tasks. In instance segmentation, Li
et al. [51] combined segment proposal and object detection
for FullyConvolutional Instance Segmentation (FCIS)where
the general idea is to predict the locations in a fully convolu-
tional network. He et al. [39] proposed aMaskR-CNNwhich
extends Faster R-CNN.

The work by Mehta et al. [62] introduces a CNN for the
prediction of power loss. Their system additionally localizes
and classifies the type of soiling. Their work is based onRGB
images of whole PV modules and addresses the additional
geometric challenges of acquisitions in the field. In contrast,
this work operates on EL images of individual cells of a PV
module, and in particular focuses on their precise segmenta-
tion in a manufacturing setting.

The main limitation of learning-based approaches is
the requirement of a considerable number of appropriately
labeled images for training. However, pixelwise labeling is
time-consuming, and in absence of data not possible at all.
Also, such learning-based approaches require training data
that is statistically representative for the test data, which
oftentimes requires to re-train a model on data with different
properties. In contrast, the proposed approach can be read-
ily deployed to robustly segment EL images of PV modules
without notable requirements of labeled training data.

The closest work related to the proposed method was pre-
sented by Sovetkin and Steland [86]. This method proposes a
robust PV module grid alignment for the application on field
EL images, where radial and perspective distortion, motion
blur, and disturbing backgroundmay be present. The method
uses an external checkerboard calibration for radial distortion
correction, and prior knowledge on the solar cell topology in
terms of the relative distances of the grid lines separating
the busbars and cell segments. In contrast, EL images taken
under manufacturing conditions may be cropped or rotated,
and the camera is not always pre-calibrated. Hence, the pro-
posed method performs an automated on-line calibration for
every EL image. This is particularly useful for EL images
of PV modules from various sources, for which the camera
parameters may not be available, or when zoom lenses are
used. Additionally, the proposed method performs a pixel-
wise classification of pixels belonging to the active cell area
and therefore is able to provide masks tailored to a specific
module type. Such masks allow to exclude unwanted back-
ground information and to simplify further processing.

In this work, we unify lens distortion estimation and grid
detection by building upon ideas of Devernay and Faugeras
[20]. However, instead of using independent line segments to

estimate lens distortion parameters, we constrain the prob-
lem using domain knowledge by operating on a coherent
grid. This joint methodology allows to correct errors through
feedback from the optimization loop used for estimating lens
model parameters. The proposed approach conceptually dif-
fers from Sovetkin and Steland [86], where both steps are
decoupled and an external calibration is required.

3 Methodology

The proposed framework uses a bottom-up pipeline to gradu-
ally infer a high-level representation of a solar module and its
cells from low-level ridge edge features in an EL image. Cell
boundaries and busbars are represented as parabolic curves
to robustly handle radial lens distortion which causes straight
lines to appear curved in the image. Once we estimated
the lens distortion parameters, the parabolas are rectified to
obtain a planar cell grid. This rectified representation is used
to segment the solar cells.

3.1 Overview

The general framework for segmenting the solar cells in EL
images of PV modules is illustrated in Fig. 2 and consists of
the following steps. First, we locate the busbars and the inter
solar cell borders by extracting the ridge edges. The ridge
edges are extracted at subpixel accuracy and approximated
by a set of smooth curves defined as second-degree polyno-
mials. The parametric representation is used to construct an
initial grid of perpendicularly arranged curves that identify
the PV module. Using this curve grid, we estimate the initial
lens distortion parameters and hypothesize the optimal set of
curves by further excluding outliers in a RANdom SAmple
Consensus (RANSAC) scheme. Then we refine the lens dis-
tortion parameters that we eventually use to rectify the EL
image. From the final set of curves we infer the PV module
configuration and finally extract the size, perspective, and
orientation of solar cells.

3.2 Preprocessing

First, the contrast of an EL image is enhanced to account for
possible underexposure. Then, low-level edge processing is
applied to attenuate structural variations thatmight stem from
cracks or silicon wafer texture, with the goal of preserving
larger lines and curves.

3.2.1 Contrast enhancement

Here, we follow the approach by Franken et al. [28]. A
copy Ibg of the input EL image I is blurred with a Gaus-
sian kernel, and a morphological closing with a disk-shaped
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Preprocessing Curve Extraction Model Estimation Cell Extraction

Fig. 2 The proposed PV module segmentation pipeline consists of four stages. In the preprocessing stage (a), local ridge features are extracted.
In the curve extraction stage (b), candidate parabolic curves are determined from ridges. In the model estimation stage (c), a coherent grid and the
lens distortion are jointly estimated. In the cell extraction stage (d) the cell topology is determined and the cells are extracted

structure element is applied. Dividing each pixel of I by Ibg
attenuates unwanted background noise while emphasizing
high contrast regions. Then, histogram equalization [34,
pp. 134sqq.] is applied to increase its overall contrast. Fig-
ure 5b shows the resulting image I .

3.2.2 Gaussian scale-space ridgeness

The high-level grid structure of a PV module is defined by
inter-cell borders and busbars, which correspond to ridges in
the image. Ridge edges can be determined from second-order
partial derivatives summarized by a Hessian. To robustly
extract line and curve ridges, we compute the second-order
derivative of the image at multiple scales [54,55]. The
responses are computed in a Gaussian pyramid constructed
from an input EL image [53]. This results in several layers of
the pyramid at varying resolutions commonly referred to as
octaves. The eigendecomposition of the Hessian computed
afterwards provides information about line-like structures.

More in detail, let u := (u, v)� denote discrete pixel coor-
dinates, O ∈ N the number of octaves in the pyramid, and
P ∈ N the number of sublevels in each octave. At the finest
resolution, we set σ to the golden ratio σ = 1 + √

5/2 ≈ 1.6. At
each octave o ∈ {0, . . . , O−1} and sublevel � ∈ {0, . . . , P−
1}, we compute the Hessian by convolving the image with
the derivatives of theGaussian kernel. To obtain the eigenval-
ues, the symmetric Hessian is diagonalized by annihilating
the off-diagonal elements using the Jacobi method which
iteratively applies Givens rotations to the matrix [33]. This
way, its eigenvalues and the corresponding eigenvectors can
be simultaneously extracted in a numerically stable manner.
Let H = V�V� denote the eigendecomposition of the Hes-
sianH, where� := diag(λ1, λ2) ∈ R

2×2 is a diagonalmatrix
of eigenvalues λ1 > λ2 and V := (v1, v2) are the associ-
ated eigenvectors. Under a Gaussian assumption, the leading
eigenvector dominates the likelihood if the associated lead-
ing eigenvalue is spiked. In this sense, the local ridgeness
describes the likelihood of a line segment in the image at
position u, and the orientation of the associated eigenvector
specifies the complementary angle β(u) of the most likely
line segment orientation at position u. The local ridgeness
R(u) is obtained as the maximum positive eigenvalue λ1(u)

across all octaves and sublevels. Both the ridgeness R(u) and

the angle β(u) provide initial cues for ridge edges in the EL
image (see Fig. 5c).

3.2.3 Contextual enhancement via tensor voting

Ridgeness can be very noisy (cf., Fig. 5c). To discern noise
and high curvatures from actual line and curve features,
R(u) is contextually enhanced using tensor voting [61].

Tensor voting uses a stick tensor voting field to model the
likelihood that a feature in the neighborhood belongs to the
same curve as the feature in the origin of the voting field [27].
The parameter ς > 0 controls the proximity of the voting
field, and ν determines the angular specificity that we set to
ν = 2 in our experiments.

Following Franken et al. [27], stickness R̃(u) = λ̃1 − λ̃2
is computed as the difference between the two eigenval-
ues λ̃1, λ̃2 of the tensor field, where λ̃1 > λ̃2. β̃(u) = � ẽ1
is the angle of the eigenvector ẽ1 ∈ R

2 associated with the
largest eigenvalue λ̃1, analogously to β(u).

We iterate tensor voting two times, since one pass is not
always sufficient [28]. Unlike Franken et al., however, we
do not thin out the stickness immediately after the first pass
to avoid too many disconnected edges. Given the high res-
olution of the EL images in our dataset of approximately
2500 × 2000 pixels, we use a fairly large proximity of
ς1 = 15 in the first tensor voting step, and ς2 = 10 in
the second.

Figure 5d showsa typical stickness R̃(u)output. The stick-
ness along the orientation β̃(u) is used to extract curves at
subpixel accuracy in the next step of the pipeline.

3.3 Curve extraction

We seek to obtain a coherent grid which we define in terms
of second-degree curves. These curves are traced along the
previously extracted ridges by grouping centerline points by
their curvature. We then fit second-degree polynomials to
these points, which yields a compact high-level curve rep-
resentation while simultaneously allowing to discard point
outliers.
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(b)(a)

Fig. 3 Extraction of ridge edges from stickness at subpixel accuracy. (a) shows a stickness patch with its initial centerline ( ) at discrete
coordinates obtained by skeletonization. The refined ridge centerline at subpixel accuracy is estimated by fitting a Gaussian function ( ) to the
cross-section profile of the ridge edge in (b) to equidistantly sampled stickness values within a predefined sampling window ( )

3.3.1 Extraction of ridges at subpixel accuracy

To ensure a high estimation accuracy of lens distortion
parameters, we extract ridge edges at subpixel accuracy.
This also makes the segmentation more resilient in out-of-
focus scenarios, where images may appear blurry and the
ridge edges more difficult to identify due to their smoother
appearance. Blurry images can be caused by slight camera
vibrations during the long exposure time of several sec-
onds that is required for imaging. Additionally, focusing in a
dark room can be challenging, hence blur cannot be always
avoided. Nevertheless, it is beneficial to be able to operate
also on blurry images, as they can still be useful for defect
classification and power yield estimation in cell areas that do
not irradiate.

To this end, we perform non-maximum suppression by
Otsu’s global thresholding [67] on the stickness R̃(u) fol-
lowed by skeletonization [80]. Afterwards, we collect the
points that represent the centerline of the ridges through edge
linking [48]. The discrete coordinates can then be refined by
setting the centerline to the mean of a Gaussian function fit-
ted to the edge profile [23] using the Gauss-Newton (GN)
optimization algorithm [66]. The 1-dimensional window of
the Gaussian is empirically set to 21 pixels, with four sample
points per pixel that are computed via bilinear interpolation.
The GN algorithm is initialized with the sample mean and
standard deviation in thewindow, andmultiplicatively scaled
to the sticknessmagnitude at themean. Themean of the fitted
Gaussian is then reprojected along the edge profile oriented
at β̃(u) to obtain the edge subpixel position. Figure 3 visu-
alizes these steps.

A nonparametric alternative to fitting a Gaussian to the
ridge edge profile constitutes fitting a parabola instead [19].
Such an approach is very efficient since it involves a closed-

1 2

3

Fig. 4 When considering combining two adjacent curve segments, one

with the end line segment
−→
AB and the other with the start line segment−−→

B ′A′, we evaluate the angles α1, α2, and α3 and ensure they are below
the predefined threshold ϑ with α1, α2 ≥ α3 ≥ π − ϑ . This way, the
combined curve segments are ensured to have a consistent curvature

form solution. On the downside, however, the method suffers
from oscillatory artifacts which require additional treatment
[30].

3.3.2 Connecting larger curve segments

A limitation of the edge linking method is that it does not
prioritize curve pairswith similar orientation. To address this,
we first reduce the set of points that constitute a curve to
a sparse representation using the nonparametric variant of
theRamer-Douglas-Peucker algorithm [21,73] introduced by
Prasad et al. [71]. Afterwards, edges are disconnected if the
angle between the corresponding line segments is nonzero.
In a second pass, two line segments are joined if they are
nearby, of approximately the same length, and pointing into
the same direction within an angle range ϑ = 5◦. Figure 4
illustrates the way two curve segments are combined.

In the final step, the resulting ni points of the i-th curve
of a line segment form a matrix Q̂(i) ∈ R

2×ni . For brevity,
we denote the j-th column of Q̂(i) by q̂ j ∈ R

2. Q̂(i) is used
to find the parametric curve representation.
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3.3.3 Parametric curve representation

Projected lines are represented as second-degree polyno-
mials to model radial distortion. The curve parameters are
computed via linear regression on the curve points. More
specifically, let

f (x) = a2x
2 + a1x + a0 (1)

denote a second-degree polynomial in horizontal or vertical
direction. The curve is fitted to line segment points q̂ j ∈
{(x j , y j )� | j = 1, . . . , ni } ⊆ Q̂(i) of the i-th curve Q̂(i) by
minimizing the Mean Squared Error (MSE)

MSE( f ) = 1

ni

ni∑

j=1

( f (x j ) − y j )
2 (2)

using RANSAC iterations [24]. In one iteration, we ran-
domly sample three points to fit Eq. (1), and then determine
which of the remaining points support this curve model via
MSE. Outlier points are discarded if the squared difference
between the point and the parabolic curve value at its posi-
tion exceeds ρ = 1.5. To keep the computational time low,
RANSAC is limited to 100 iterations, and stopped early once
sufficiently many inliers at a 99% confidence level are found
[38, ch. 4.7]. After discarding the outliers, each curve is refit-
ted to supporting candidate points using linear least squares
[33]. To ensure a numerically stable and statistically robust
fit, the 2-D coordinates are additionally normalized [37].

3.4 Curve grid model estimation

The individual curves are used to jointly form a grid, which
allows to further discard outliers, and to estimate lens distor-
tion. To estimate the lens distortion,we employ the plumbline
constraint [11]. The constraint models the assumption that
curves in the image correspond to straight lines in real world.
In this way, it becomes possible to estimate distortion effi-
ciently froma single image,which allows to use this approach
also post hoc on cropped, zoomed or similarly processed
images.

3.4.1 Representation of lens distortion

Analogously to Devernay and Faugeras [20], we represent
the radial lens distortion by a function L : R≥0 → R≥0 that
maps the distance of a pixel from the distortion center to a
distortion factor. This factor can be used to radially displace
each normalized image coordinate x̃.

Image coordinates are normalized by scaling down coor-
dinates x := (x, y)� horizontally by the distortion aspect
ratio sx (corresponding to image aspect ratio decoupled from

the projection on the image plane) followed by shifting the
center of distortion c := (cx , cy)� to the origin and nor-
malizing the resulting 2-D point to the unit range using the
dimensions M × N of the image of width M and height N .
Homogeneous coordinates allow to express the normaliza-
tion conveniently using a matrix product. By defining the
upper-triangular matrix

K =
⎡

⎣
sx M 0 cx
0 N cy
0 0 1

⎤

⎦ (3)

the normalizing mapping n : Ω → [−1, 1]2 is

n(x) = π
(
K−1π−1(x)

)
, (4)

where π : R
3 → R

2 projects homogeneous to inhomoge-
neous coordinates,

π : (x, y, z)� �→ 1

z
(x, y)� , for z �= 0 (5)

and the inverse operationπ−1 : R
2 → R

3 backprojects inho-
mogeneous to homogeneous coordinates:

π−1 : (x, y)� �→ (x, y, 1)� . (6)

Note that the inverse mapping n−1 converts normalized
image coordinates to image plane coordinates.

3.4.2 The field-of-view lens distortion model

To describe the radial lens distortion, we use the first-order
Field-of-View (FOV) lens model by Devernay and Faugeras
that has a single distortion parameter ω. While images can
also suffer from tangential distortion, this type of distortion
is often negligible [92]. The sole parameter 0 < ω ≤ π

denotes the opening angle of the lens. The corresponding
radial displacement function L is defined in terms of the
distortion radius r ≥ 0 as

L(r) = 1

ω
arctan

(
2r tan

ω

2

)
, for ω �= 0 . (7)

One advantage of the model is that its inversion has a closed-
form solution with respect to the distortion radius r .

Similar toDevernay and Faugeras, we decouple the distor-
tion from the projection onto the image plane, avoiding the
need to calibrate for intrinsic camera parameters. Instead, the
distortion parameter ω is combined with the distortion cen-
ter c ∈ Ω and distortion aspect ratio sx which are collected
in a vector θ := (c, sx , ω).
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(a) EL image of a monocrystalline PV module (b) Background-equalized image

(c) Ridgeness image ( ) from the filter responses at multiple scales (d) Stickness of ridgeness contextually enhanced using tensor voting

(e) Extracted line segments grouped by their curvature (f) Horizontal ( ) and vertical ( ) parabolic curves filtered using
the intersection constraint

Fig. 5 Visualization of the preprocessing, curve extraction, and model estimation stages for the PV module from Fig. 1
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Normalized undistorted image coordinates x̃u = δ−1(x̃d)
can be directly computed from distorted coordinates x̃d as

δ−1(x̃d) = L−1(rd)

rd
x̃d , for rd �= 0 (8)

where rd = ‖x̃d‖2 is the distance of x̃d from the origin.
L−1(r) is the inverse of the lens distortion function in Eq.
(7), namely

L−1(r) = tan rω

2 tan ω
2

, for ω �= 0 . (9)

The function that undistorts a point x ∈ Ω is thus

u(x) = n−1
(
δ−1 (n(x))

)
. (10)

Note that Eq. (8) exhibits a singularity at rd � 0 for points
close to the distortion center. By inspecting the function’s
limits, one obtains

lim
rd→0+ δ−1(x̃d) = ω

2 tan ω
2

x̃d . (11)

Analogously, Eq. (9) is singular at ω = 0 but approaches
limr→0+ L−1(r) = r at the limit. In this case, Eq. (8) is
an identity transformation which does not radially displace
points.

3.4.3 Estimation of initial lens distortion model parameters

Lens distortion is specified by the distortion coefficientω, the
distortion aspect ratio sx , and the distortion center c. Naive
solution leads to a non-convex objective function with sev-
eral local minima. Therefore, we first seek an initial set of
parameters close to the optimum, and then proceed using a
convex optimization to refine the parameters.

We propose the following initialization scheme for the
individual parameters of the FOV lens model.
Distortion Aspect Ratio and Center We initialize the distor-
tion aspect ratio to sx = 1, and the distortion center to the
intersection of two perpendicular curves with smallest coef-
ficients in the highest order polynomial term. Such curves
can be assumed to have the smallest curvature and are thus
located near the distortion center.

To find the intersection of two perpendicular curves, we
denote the coefficients of a horizontal curve by a2, a1, a0,
and the coefficients of a vertical curve by b2, b1, b0. The
position x of a curve intersection is then the solution to

a22b2x
4 + 2a1a2b2x

3 + x2
(
2a0a2b2 + a21b2 + a2b1

) + x

·(2a0a1b2 + a1b1 − 1) + a20b2 + a0b1 + b0 = 0 . (12)

The real roots of the quartic (12) can be found with the
Jenkins-Traub Rpoly algorithm [45] or a specialized quartic
solver [26]. The corresponding values f (x) are determined
by inserting the roots back into Eq. (1).
Distortion Coefficient Estimation of the distortion coeffi-
cientω from a set of distorted image points is not straightfor-
ward because the distortion function L(r) is nonlinear. One
way to overcome this problem is to linearize L(r)with Taylor
polynomials, and to estimate ω with linear least squares.

To this end, we define the distortion factor

k := L(r)

r
, for k ∈ R>0 (13)

which maps undistorted image points {p j }nj=1 lying on the
straight lines to distorted image points {q j }nj=1 lying on the
parabolic curves. Both point sets are then related by

pk = q . (14)

The distorted points q j are straightforward to extract by eval-
uating the second-degree polynomial of the parabolic curves.
To determine p j , we define a line with the first and the last
point in q j , and select points from this line. Collecting these
points in the vectors p ∈ R

2n and q ∈ R
2n yields an overde-

termined system of 2n linear equations in one unknown. k̂ is
then estimated via linear least squares as

k̂ = argmin
k

‖q − pk‖22 , (15)

where the solution is found via the normal equations [33] as

k̂ := p�q
p�p

. (16)

The points q j ,p j refer to the columns of the two matrices
Q(i), P(i) ∈ R

2×ni , respectively, where ni again denotes the
number of points, which are used in the following step of the
pipeline.

To determine ω from the relation k = L(r)
r , L(r) is

expanded around ω0 = 0 using Taylor series. More specifi-
cally,we use a second-order Taylor expansion to approximate

arctan(x) = x + O(x2) , (17)

and a sixth-order Taylor expansion to approximate

tan(y) = y + y3

3
+ 2y5

15
+ O(y6) . (18)

Let L(r) = 1
ω
arctan(x) with x = 2r tan(y), and y = ω

2 .
We substitute the Taylor polynomials from Eqs. (17) and
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Fig. 6 Approximation of the distortion coefficient ω using Eq. (19)
( ) compared to the exact solution with respect to varying radii r .
For large radii outside the range of normalized coordinates (i.e., the
radius of the half-unit circle r > 1/

√
2), the estimate is not accurate. This

implies that the ideal sampled pointsmust be both at some distance from
the image border and also from the distortion center. As a side note, the
estimation error becomes unacceptable for wide lenses where ω > π/4.
However, the EL images in this work (ω̄) are well below this threshold

(18), and x, y into Eq. (13) to obtain a biquadratic polyno-
mial Q(ω) independent of r :

L(r)

r
≈ 1 + 1

12
ω2 + 1

120
ω4

︸ ︷︷ ︸
=:Q(ω)

. (19)

By equating the right-hand side of Eq. (19) to k

Q(ω) = k (20)

we can estimate ω from four roots of the resulting polyno-
mial Q(ω). These roots can be found by substituting z = ω2

into Eq. (19), solving the quadratic equationwith respect to z,
and substituting back to obtain ω. This eventually results in
the four solutions ±√

z1,2. The solution exists only if k ≥ 1,
as complex solutions are not meaningful, and thus corre-
sponds to the largest positive real root.

We evaluated the accuracy of the approximation (19) with
the results shown in Fig. 6. For large radii, the approximation
significantly deviates from the exact solution. Consequently,
this means that the selected points for the estimation must
ideally be well distributed across the image. Otherwise, the
lens distortion parameter will be underestimated. In practice,
however, this constraint does not pose an issue due to the
spatial distribution of the solar cells across the captured EL
image.

3.4.4 Minimization criterion for the refinement of lens
distortion parameters

The Levenberg-Marquardt algorithm [50,57] is used to refine
the estimated lens distortion parameters θ . The objective
function is

θ� := argmin
θ

1

2

n∑

i=1

χ2(P(i), θ) . (21)

P(i) ∈ R
2×m is amatrix ofm 2-D points of the i-th curve. The

distortion error χ2 quantifies the deviation of the points from
the corresponding ideal straight line [20]. The undistorted
image coordinates p j := (x j , y j )� ∈ Ω are computed as
p j = u(q j ) by applying the inverse lens distortion given
in Eq. (10) to the points q j of the i-the curve Q(i). In a
similar manner, the obtained points p j form the columns of
P(i) ∈ R

2×ni .
Following Devernay and Faugeras, we iteratively opti-

mize the set of lens parameters θ . In every step t , we
refine these parameters and then compute the overall error
εt := ∑n

i=1 χ2(P(i), θ) over all curve points. Afterwards,
we undistort the curve points and continue the optimization
until the relative change in error ε := (εt−1 − εt )/εt falls
below the threshold ε = 10−6.

Minimizing the objective function (21) for all parameters
simultaneously may cause the optimizer to be trapped in a
local minimum. Hence, following Devernay and Faugeras
[20], we optimize the parameters θ = (ω, sx , c) in subsets
starting with ω only. Afterwards, we additionally optimize
the distortion center c. Finally, the parameters θ are jointly
optimized.

3.4.5 Obtaining a consistent parabolic curve grid model

The layout of the curves is constrained to a grid in order to
eliminate outlier curves. Ideally, each horizontally oriented
parabola should intersect each vertically oriented parabola
exactly once. This intersection can be found using Eq.
(12). Also, every parabolic curve should not intersect other
parabolic curves of same orientation within the image plane.
This set of rules eliminates most of the outliers.
Robust Outlier Elimination Locally Optimized RANdom
SAmple Consensus (LO-RANSAC) [15] is used to remove
outlier curves. In every LO-RANSAC iteration, the grid con-
straints are imposed by randomly selecting two horizontal
and two vertical curves to build a minimal grid model. Inliers
are all curves that (1) exactly once intersect the model grid
lines of perpendicular orientation, (2) not intersect the model
grid lines of parallel orientation, and (3) whose MSE of the
reprojected undistorted points is not larger than one pixel.

123



Segmentation of photovoltaic module cells in uncalibrated electroluminescence... Page 11 of 23    84 

Fig. 8 Intermediate steps of the solar mask estimation process

Δ1

(a)

Δ1

Δ1

Δ2

(b)

Δ1

Δ1

Δ2

Δ2

(c)

Fig. 7 Estimation of solar module topology requires determining the
number of subdivisions (i.e., rectangular segments) in a solar cell. Com-
mon configurations include no subdivisions at all (i.e., one segment) (a),
three segments (b) and four segments (c). Notice how the arrangement
of rectangular segments is symmetric and segment sizes increasemono-
tonically towards the center, i.e., Δ1 < · · · < Δn . In particular, shape
symmetry can be observed not only along the vertical axis of the solar
cell but also along the horizontal one as well

Remaining Curve Outliers Halos around the solar modules
and holdingmounts (such as in Fig. 5) can generate additional
curves outside of the cells.We applyOtsu’s thresholding [67]
on the contrast-normalized image and discard outer curves
that generate additional grid rows or columns with an aver-
age intensity in the enclosed region below the automatically
determined threshold.

3.5 Estimation of the solar module topology

A topology constraint on the solar cell can be employed to
eliminate remaining non-cell curves in the background of the
PV module, and the number and layout of solar cells can be
subsequently estimated. However, outliers prevent a direct
estimation of the number of solar cell rows and columns in a
PVmodule. Additionally, the number and orientation of seg-
ments dividing each solar cell are generally unknown. Given
the aspect ratio of solar cells in the imaged PV module, the
topology can be inferred from the distribution of parabolic
curves. For instance, in PV modules with equally long hori-
zontal and vertical cell boundary lines, the solar cells have a
square (i.e., 1 : 1) aspect ratio.

The number of curves crossing each square image area of
solar cell is constant. Clustering the distances between the
curves allows to deduce the number of subdivisions within
solar cells.

3.5.1 Estimation of the solar cell subdivisions and the
number of rows and columns

The solar cells and their layout are inferred from the statis-
tics of the line segment lengths in horizontal and vertical
direction.We collect these lengths separately for each dimen-
sion and cluster them. Dbscan clustering [22] is used to
simultaneously estimate cluster membership and the number
of clusters. Despite the presence of outlier curves, clusters
are representative of the distribution of segment dimensions
within a cell. For example, if a solar cell consists of three
vertically arranged segments (as in Fig. 7b) with heights of
20 : 60 : 20 pixels, the two largest clusters will have the
medians 60 and 20. With the assumption that the segment
arrangement is typically symmetric, the number of segments
is estimated as the number of clusters times two minus one.
If clustering yields a single cluster, we assume that the solar
cells consist of a single segment. Outlier curves or segments,
respectively, are rejected by only considering the largest clus-
ters, with the additional constraint that the sizes of the used
clusters are proportional to each other, and that not more than
two different segments (as in Fig. 7c) can be expected in a
cell. The number of rows and columns of a solar cell is deter-
mined by dividing the overall size of the curve grid by the
estimated cell side lengths.

3.5.2 Curve grid outlier elimination

The estimated proportions are used to generate a synthetic
planar grid that is registered against the curve grid intersec-
tions. Specifically, we use the rigid point set registration of
Coherent Point Drift (CPD) [64] because it is deterministic
and allows us to account for the proportion of outliers using
a parameter 0 ≤ w ≤ 1. We can immediately estimate w as
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the fraction of points in the synthetic planar grid and the total
number of intersections in the curve grid.

To ensure CPD convergence, initial positions of the syn-
thetic planar grid should be sufficiently close to the curve
grid intersections. We therefore estimate the translation and
rotation of the planar grid to closely pre-align it with the
grid we are registering against. The initial translation can be
estimated as the curve grid intersection point closest to the
image plane origin. The 2-D in-plane rotation is estimated
from the average differences of two consecutive intersection
points along each curve grid row and column. This results in
two 2-D vectors which are approximately orthogonal to each
other. The 2-D vector with the larger absolute angle is rotated
by 90 % such that both vectors become roughly parallel. The
estimated rotation is finally obtained as the average angle of
both vectors.

3.5.3 Undistortion and rectification

The PV module configuration is used to undistort the whole
image using Eq. (10). After eliminating the lens distortion,
we use Direct Linear Transform (DLT) [38] to estimate the
planar 2-D homography using the four corners of the curve
grid with respect to the corners of the synthetic planar grid.
The homography is used to remove perspective distortion
from the undistorted curve grid.

The intersections of the perspective corrected curve grid
may not align exactly with respect to the synthetic planar
grid because individual solar cells are not always accurately
placed in a perfect grid but rather with a margin of error.
The remaining misalignment is therefore corrected via affine
Moving Least Squares (MLS) [81], which warps the image
using the planar grid intersections as control points distorted
using the estimated lens parameters, and curve grid intersec-
tions are used as their target positions.

3.6 Estimation of the active solar cell area

We use solar cell images extracted from individual PV mod-
ules to generate a mask that represents the active solar cell
area. Such masks allow to exclude the background and the
busbars of a solar cell (see Fig. 8). In particular, active cell
area masks are useful for detection of cell cracks since they
allow to mask out the busbars, which can be incorrectly iden-
tified as cell cracks due to high similarity of their appearance
[87,89].

Estimation of solar cellmasks is related to the image label-
ing problem, where the goal is to classify every pixel into
several predefined classes (in our case, the background and
the active cell area). Existing approaches solve this problem
using probabilistic graphical models, such as a Conditional
Random Field (CRF) which learns the mapping in a super-
visedmanner through contextual information [40]. However,

since the estimated curve grid already provides a global con-
text, we tackle the pixelwise classification as a combination
of adaptive thresholding and prior knowledge with regard
to the straight shape of solar cells. Compared to CRFs, this
approach does not require a training step and is easy to imple-
ment.

To this end, we use solar cells extracted from a PVmodule
to compute a mean solar cell (see Figs. 8a, b). Since intensi-
ties within a mean solar cell image can exhibit a large range,
we apply locally adaptive thresholding [68] on 25×25 pixels
patches using theirmean intensity, followed by a 15×15mor-
phological opening and flood filling to close any remaining
holes. This leads to an initial binary mask.

Ragged edges at the contour are removed using vertical
and horizontal cell profiles (Fig. 8b). The profiles are com-
puted as pixelwise median of the initial mask along each
image row or column, respectively. We combine the back-
projection of these profiles with the convex hull of the binary
mask determined with the method of Barber et al. [6] to
account for cut-off corners using bitwise AND (cf., Fig. 8c).
To further exclude repetitive patterns in the EL image of a
solar cell, e.g., due to low passivation efficiency in the con-
tact region (see Fig. 8d), we combine the initial binary mask
and the augmented mask via bitwise XOR.

We note that solar cells are usually symmetric about both
axes. Thus, the active solar cell area mask estimation can be
restricted to only on quadrant of the average solar cell image
to enforce mask symmetry. Additionally, the convex hull of
the solar cell and its extra geometry can approximated by
polygons [1] for a more compact representation.

3.7 Parameter tuning

The proposed solar cell segmentation pipeline relies on a
set of hyperparameters that directly affect the segmentation
robustness and accuracy. Table 1 provides an overview of all
parameters with their values used in this work.

3.7.1 Manual search

Since the parameters of the proposed segmentation are intu-
itive and easily interpretable, it is straightforward to select
them based on the setup used for EL image acquisition.

Main influence factors that must be considered when
choosing the parameters are image resolution and physical
properties of the camera lens.

Provided parameter values were found to work particu-
larly well for high resolution EL images and standard camera
lenses, as in our dataset (cf., Sect. 4.1). For low resolution
EL images, however, the number of pyramid octaves and sub-
levels will need to be increased to avoid missing important
image details.Whereas, tensor voting proximity, on contrary,
will need to be lowered, since the width of ridge edges in low
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Table 1 Overview of segmentation pipeline parameters and their values used in this work

§ Symbol Description Used value

3.2.2 O Number of octaves in Gaussian scale-space pyramid 5

P Number of sublevels in each octave 8

σ Gaussian scale-space standard deviation 1.6

γ Gaussian scale-space pyramid downsampling factor 2

3.2.3 ν Tensor voting angular specificity 2

ς1,2 Proximity of the 1st and 2nd tensor voting steps 15, 10

3.3.1 1-D sampling window for Gaussian-based subpixel position 21

3.3.2 ϑ Maximum merge angle of two neighboring line segments 5◦

3.3.3 ρ Maximum error between fitted parabolic curve value at curve point 1.5

3.4.4 ε Minimal change in error during refinement of lens distortion parameters 10−6

3.5 Solar cell aspect ratio 1 : 1
3.6 Locally adaptive thresholding window size 25 × 25

resolution images tends to be proportional to the image reso-
lution. This immediately affects the size of the 1-D sampling
window for determining the Gaussian-based subpixel posi-
tion of curve points.

Curve extraction parameters correlate with the field-of-
view of the EL camera lens. In particular for wide angle
lenses, the merge angle ϑ must be increased.

Parabolic curve fit error ρ balances between robustness
and accuracy of the segmentation result. The window size
for locally adaptive thresholding used for estimation of solar
cell masks correlates both with the resolution of EL images,
but also with the amount of noise and texture variety in solar
cells, e.g.due to cell cracks.

3.7.2 Automatic search

The parameters can also be automatically optimized in an
efficient manner using random search [7,58,74,82,83,85] or
Bayesian optimization [3,8,9,49,63,84] class of algorithms.
Since this step involves supervision, pixelwise PV module
annotations are needed. In certain cases, however, it may be
not be possible to provide such annotations because individ-
ual defective PV cells can be hard to delineate, e.g., they
appear completely dark. Also, the active solar cell area of
defective cells is not always well-defined. Therefore, we
refrained from automatically optimizing the hyperparame-
ters in this work.

4 Evaluation

We evaluate the robustness and accuracy of our approach
against manually annotated ground truth masks. Further,
we compare the proposed approach against the method by

Sovetkin and Steland [86] on simplifiedmasks, provide qual-
itative results and runtimes, and discuss limitations.

4.1 Dataset

We use a dataset consisting of 44 unique PV modules with
various degrees of defects to manually select the parame-
ters for the segmentation pipeline and validate the results.
These images served as a reference during the development
of the proposed method. The PV modules were captured in a
testing laboratory setting at different orientations and using
varying camera settings, such as exposure time. Some of EL
imageswere post-processed by cropping, scaling, or rotation.
This dataset consists of 26 monocrystalline and 18 polycrys-
talline solar cells. In total, these 44 solar modules consist
of 2,624 solar cells out of which 715 are definitely defec-
tive with defects ranging from microcracks to completely
disconnected cells and mechanically induced cracks (e.g.,
electrically insulated or conducting cracks, or cell cracks due
to soldering [88]). 106 solar cells exhibit smaller defects that
are not with certainty identifiable as completely defective,
and 295 solar cells feature miscellaneous surface abnormal-
ities that are no defects. The remaining 1,508 solar cells
are categorized as functional without any perceivable sur-
face abnormalities. The solar cells in imaged PV modules
have a square aspect ratio (i.e., are quadratic).

The average resolution of the EL images is 2779.63 ×
2087.35 pixels with a standard deviation of image width and
height of 576.42 and 198.30 pixels, respectively. The median
resolution is 3152 × 2046 pixels.

Additional eight test EL images (i.e., about 15% of
the dataset) are used for the evaluation. Four modules are
monocrystalline and the remaining four are polycrystalline.
Their ground truth segmentation masks consist of hand-
labeled solar cell segments. The ground truth additionally
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specifies both the rows and columns of the solar cells, and
their subdivisions. These images show various PV modules
with a total of 408 solar cells. The resolution of the test EL
images varies around 2649.50 ± 643.20 × 2074 ± 339.12
with a median image resolution of 2581.50 × 2046.

Three out of four monocrystalline modules consist of 4×
9 cells and the remaining monocrystalline module consists
of 6 × 10 cells. All of their cells are subdivided by busbars
into 3 × 1 segments.

The polycrystalline modules consist of 6 × 10 solar cells
each. In two of the modules, every cell is subdivided into 3×
1 segments. The cells of the other twomodules are subdivided
into 4 × 1 segments.

4.2 Evaluationmetrics

We use two different metrics, pixelwise scores and the
weighted Jaccard index to evaluate both the robustness and
the accuracy of the proposed method and to compare our
method against related work. In the latter case, we addition-
ally use a third metric, the Root Mean Square Error (RMSE),
to compute the segmentation error on simplified masks.

4.2.1 Root mean square error

The first performance metric is the RMSE given in pixels
between the corners of the quadrilateralmask computed from
the ground truth annotations and the corners estimated by the
individual modalities. The metric provides a summary of the
method’s accuracy in absolute terms across all experiments.

4.2.2 Pixelwise classification

The second set of performance metrics are precision, recall,
and the F1 score [76]. These metrics are computed by
considering cell segmentation as a multiclass pixelwise clas-
sification into background and active area of individual solar
cells. A typical 60 cell PV module will therefore contain up
to 61 class labels. A correctly segmented active area pixel is
a true positive, the remaining quantities are defined accord-
ingly. Pixelwise scores are computed globally with respect
to all the pixels. Therefore, the differences between the indi-
vidual results for these scores are naturally smaller than for
metrics that are computed with respect to individual solar
cells, such as the Jaccard index.

4.2.3 Weighted Jaccard Index

The third performance metric is the weighted Jaccard index
[14,43], a variant of themetric widely known as Intersection-
over-Union (IoU). This metric extends the common Jaccard
index by an importance weighting of the input pixels. As
the compared masks are not strictly binary either due to

antialiasing or interpolation during mask construction, we
define importance of pixels by their intensity. Given two non-
binary masks A and B, the weighted Jaccard similarity is

Jw =
∑

u∈Ω min{A(u), B(u)}∑
u∈Ω max{A(u), B(u)} . (22)

The performance metric is computed on pairs of segmented
cells and ground truth masks. A ground truth cell mask is
matched to the segmented cell with the largest intersection
area, thus taking structural coherence into account.

We additionally compute the Jaccard index of the back-
ground, which corresponds to the accuracy of the method to
segment the whole solar module. Solar cell misalignment or
missed cells will therefore penalize the segmentation accu-
racy to a high degree. Therefore, the solar module Jaccard
index provides a summary of howwell the segmentation per-
forms per EL image.

4.3 Quantitative results

We evaluate the segmentation accuracy and the robustness of
our approach using a fixed set of parameters as specified in
Table 1 on EL images of PV modules acquired in a material
testing laboratory.

4.3.1 Comparison to related work with simplified cell masks

The method by Sovetkin and Steland focuses on the esti-
mation of the perspective transformation of the solar module
and the extraction of solar cells. Radial distortion is corrected
with a lens model of an external checkerboard calibration.
The grid structure is fitted using a priori knowledge of the
module topology. For this reason, we refer to the method as
Perspective-corrected Grid Alignment (PGA). The method
makes no specific proposal for mask generation and there-
fore yields rectangular solar cells.

In order to perform a comparison, the exact masks (cf.,
Fig. 9a) are restricted to quadrilateral shapes (cf., Fig. 9b).
The quadrilateral mask is computed as the minimum circum-
scribing polygon with four sides, i.e., a quadrilateral, using
the approach of Aggarwal et al. [1]. The quadrilateral exactly
circumscribes the convex hull of the solar cell mask with all
the quadrilateral sides flush to the convex hull.

PGA assumes that radial distortion is corrected by an
external checkerboard calibration. This can be a limiting fac-
tor in practice. Hence, the comparison below considers both
practical situations by running PGA on distorted images and
on undistorted images using the distortion correction of this
work.
Root Mean Square Error Table 2 provides the RMSE in pix-
els between the corners of the quadrilaterals computed by
the respective modality and the quadrilateral mask estimated
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Fig. 9 Example of an exact mask (a) of solar cells estimated using the proposed approach and a quadrilateral mask (b) determined from the exact
mask. The latter is used for comparison against the method of Sovetkin and Steland [86]. Both masks are shown as color overlays. Different colors
denote different instances of solar cells

Table 2 Root Mean Square
Error (RMSE), in pixels, of the
distance between the corners of
the quadrilateral mask
determined from the ground
truth annotations and the corners
determined by the respective
method in all eight test images

Distorted Undistorted

PGA Proposed PGA Proposed

ω (ω, sx , c) w/ MLS ω (ω, sx , c) w/ MLS

Monocrystalline 6.09 2.71 2.61 2.64 4.00 2.88 2.68 2.61

Polycrystalline 5.32 2.56 2.52 2.45 2.76 2.33 1.91 1.77

Overall 5.65 2.62 2.56 2.53 3.32 2.55 2.26 2.15

Bold face denotes smallest error

from the ground truth. The metric is provided for monocrys-
talline and polycrystalline solar wafers separately, and for
both types combined. In all cases, the proposed approach out-
performs both PGAvariants.We particularly notice that PGA
greatly benefits from lens distortion estimation. This under-
lines our observation that the latter is essential for highly
accurate segmentation.
Pixelwise Classification Pixelwise scores for the simplified
masks of both methods are given in Table 3. For monocrys-
talline PV modules, PGA generally achieves higher scores.
However, highest scores are achieved only for images for
which the lens distortion has been removed. The proposed
method fails to segment a row of cells in a solar mod-
ule resulting in a lower recall. However, for polycrystalline
PV modules, the proposed method consistently outperforms
PGA. In the overall score, the proposed method also out-
performs the best-case evaluation for PGA on undistorted
images. However, PGA has highest recall, which is due to
the lower number of parameters of PGA.
Weighted Jaccard Index The Jaccard scores summarized
as boxplots in Fig. 10 support the pixelwise classification
scores, showing that the proposed method is more accurate
than PGA. The latter, however, is slightly more robust. For
complete modules, the considerable spread of PGA is par-
tially attributed to one major outlier. Overall, the proposed
segmentation pipeline is highly accurate. Particularly once
a cell is detected, the cell outline is accurately and robustly
segmented.

4.3.2 Ablation study

We ablate the lens distortion parameters and the post hoc
application of affine MLS to investigate their effect on the
accuracy and the success rate of the segmentation process.
The ablation is performed both on original (i.e., distorted)
EL images and undistorted ones.
Distorted vs. Undistorted EL Images For the ablation study,
we consider two main cases. In the undistorted case, both
reference and predicted masks are unwarped using estimated
lens distortion parameters. Then, quadrilaterals are fitted to
individual cell masks to allow a comparison against PGA
which always yields such quadrilateral cell masks. For a fair
comparison, PGA is also applied to undistorted images.

In the distorted case, however, the comparison is per-
formed in the original image space. Since the proposed
method yields a curved grid after applying the inverse of
lens distortion,we synthesize a regular grid frombackwarped
cell masks. Specifically, we extract the contours of estimated
solar cell masks to obtain the coordinates of the quadri-
lateral in the unwarped image, and then apply the inverse
of estimated geometric transformations to rectangle coordi-
nates. Afterwards, we fit lines to each side of the backwarped
quadrilaterals along grid rows and columns. From their inter-
sectionswe finally obtain the corner coordinates of each solar
cells in the distorted image which we can use for comparison
against distorted PGA results.
Parameterization First, we reduce the lens distortion model
to a single radial distortion parameter ω and assume both
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Table 3 Pixelwise classification
scores for quadrilateral masks
estimated using PGA and the
proposed approach

Distorted Undistorted

PGA Proposed PGA Proposed

ω (ω, sx , c) w/ MLS ω (ω, sx , c) w/ MLS

(a) Monocrystalline

Precision 97.55% 97.77% 99.18% 98.98% 98.43% 98.34% 99.67% 99.53%

Recall 98.37% 82.08% 97.53% 97.71% 98.87% 81.56% 96.94% 97.14%

F1 score 97.95% 86.57% 98.24% 98.24% 98.65% 86.46% 98.18% 98.21%

Accuracy 98.19% 88.43% 98.34% 98.32% 98.82% 88.55% 98.33% 98.38%

(b) Polycrystalline

Precision 97.22% 97.70% 98.82% 98.77% 98.36% 97.40% 99.52% 99.59%

Recall 97.70% 88.35% 99.29% 99.36% 99.29% 87.08% 99.17% 99.35%

F1 score 97.45% 91.32% 99.05% 99.06% 98.82% 90.42% 99.35% 99.47%

Accuracy 97.13% 92.44% 98.89% 98.90% 98.66% 92.06% 99.25% 99.39%

(c) Overall

Precision 97.37% 97.30% 99.00% 98.88% 98.38% 97.09% 99.58% 99.56%

Recall 97.78% 82.36% 98.27% 98.39% 99.01% 81.15% 97.97% 98.18%

F1 score 97.57% 87.45% 98.60% 98.60% 98.69% 86.60% 98.73% 98.83%

Accuracy 97.74% 90.15% 98.58% 98.57% 98.75% 90.06% 98.72% 98.81%

Bold face denotes the best performing method

Mono-
crystalline

Poly-
crystalline

Overall
88

90

92

94

96

98

100

Ja
cc
ar
d
in
de
x
� %

�

(a) Solar cells

Mono-
crystalline

Poly-
crystalline

Overall

60

70

80

90

100

Ja
cc
ar
d
in
de
x
� %

�

(b)Modules

PGA (distorted) PGA (undistorted) Proposed

Fig. 10 Boxplots of Jaccard scores for the three evaluated modalities. The Jaccard scores are computed against hand-labeled ground truth masks.
In (a), the scores are computed for the individual solar cells. In (b), the scores are evaluated against the whole solar modules. The two left-most
groups in each figure correspond to boxplots with respect to different solar wafers. Whereas the right-most group summarizes the performance of
both solar wafer types combined

square aspect ratio (i.e., sx = 1) and the center of distortion
to be located in the image center. During optimization, these
two parameters are kept constant. In this experiment, we also
do not correct the curve grid using affine MLS. The compar-
ison against PGA shows that such a simplistic lens model is
still more accurate than PGA both in the distorted and undis-
torted cases (cf., Table 2). However, while the precision is

high, the recall and therefore the F1 score drops consider-
ably (cf., Table 3). The reason for this is that such a lens
parametrization is too rigid. As a consequence, this weakens
the grid detection: correctly detected curves are erroneously
discarded because of inaccuracies of the lensmodelwith only
a single parameter ω instead of four parameters (ω, sx , c).
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Table 4 Pixelwise classification scores for exact masks estimated using
the proposed approach

Metric Monocrystalline Polycrystalline Overall

Precision 97.47% 97.49% 97.53%

Recall 96.93% 98.90% 97.77%

F1 score 97.09% 98.19% 97.62%

Accuracy 97.67% 97.97% 97.80%

For the next comparison, we increase the number of
degrees of freedom.Both the distortion aspect ratio sx and the
center of distortion c are refined in addition to the radial dis-
tortion parameter ω. Curve grid correction via affine MLS is
again omitted. This parametrization achievesmuch improved
RMSE and segmentation success rates.

Finally, we use the full parametrization, i.e., we refine
all lens distortion parameters (ω, sx , c) and apply post hoc
correction via affineMLS. This model is denoted as w/MLS.
Discussion We summarize the results of the ablation study
in Tables 2 and 3. Here, w/ MLS denotes the full model that
includes the correction step via affine MLS. The full model
with post hoc affine MLS grid correction performs in many
instances best. However, applying MLS is not always ben-
eficial. Particularly, for monocrystalline PV modules, grid
correction does not always improve the results.

We conclude that the proposed joint lens model estima-
tion with full parametrization and grid detection is essential
for robustness and accuracy of the segmentation. Since the
subsequent grid correction using affineMLS onlymarginally
improves the results, its application can be seen as optional.

4.3.3 Segmentation performance with exact cell masks

To allow an exact comparison of the segmentation results to
the ground truth, we inverse-warp the estimated solar cell
masks back to the original image space by using the deter-
mined perspective projection and lens distortion parameters.
This way, the estimated solar module masks will as exactly
as possible overlay the hand-labeled ground truth masks.
Pixelwise Classification Table 4 summarizes the pixelwise
classification scores for the exact masks estimated using
the proposed method. The method is more robust on poly-
crystalline PV modules than on monocrystalline modules.
However, for both module types, the method achieves a very
high overall accuracy beyond 97 % for all metrics. Investi-
gation of failure cases for monocrystalline modules reveals
difficulties on cellswhere large gaps coincidewith cell cracks
and ragged edges.
Weighted Jaccard Index Jaccard scores for exact masks are
given in Fig. 11. The scores confirm the results of the pix-
elwise metrics. Notably, the interquartile range (IQR) of
individual cells has a very small spread, which indicates
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Fig. 11 Boxplots of Jaccard scores for the proposed approach

a highly consistent segmentation. The IQR of whole mod-
ules is slightly larger. This is, however, not surprising since
the boxplots summarize the joint segmentation scores across
multiple modules.

4.4 Qualitative results

Figure 12 shows the qualitative results of the segmentation
pipeline on four test images.The two results in the left column
are computed on monocrystalline modules, the two results in
the right column on polycrystalline modules. The estimated
solar module curve grids are highly accurate. Even in pres-
ence of complex texture intrinsic to thematerial, the accuracy
of the predicted solar module curve grid is not affected.

4.5 Runtime evaluation

Figure 13 breaks down the average time taken by the individ-
ual steps of the segmentation pipeline. Figure 14 summarizes
the contribution of individual pipeline steps to the overall pro-
cessing time for all 44 images. The timings were obtained
on a consumer system with an Intel i7-3770K CPU clocked
at 3.50 GHz and 32 GB of RAM. The first three stages of
the segmentation pipeline are implemented in C++ whereas
the last stage (except for MLS image deformation) is imple-
mented in Python.

For this benchmark, EL images were processed sequen-
tially running only on the CPU. Note, however, that the
implementation was not optimized in terms of the runtime
and only parts of the pipeline utilize all available CPU cores.
To this end, additional speedup can be achieved by running
parts of the pipeline in parallel or even on a GPU.

On average, it takes 1 min and 6 s to segment all solar cells
in a high resolution EL image (cf., Fig. 14). Preprocessing
is computationally most expensive, curve and cell extraction
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(a) Monocrystalline (b) Polycrystalline

Solar cells Busbars

Fig. 12 Qualitative segmentation results of four test images depicting the estimated curve grid superimposed over the contrast-normalized input
EL image. For visualization purposes, the original EL images were cropped

are on average cheapest. The standard deviation of the model
estimation step is highest (see Fig. 13), which is mostly due
to dependency upon the total number of ridge edges and the
number of resulting curves combined with the probabilistic
nature of LO-RANSAC.

Interestingly, processing EL images of monocrystalline
solar modules takes slightly longer on average than process-
ing polycrystalline solar modules. This is due to large gaps
between ridges caused by cut-off corners that produce many
disconnected curve segments which must be merged first.
Conversely, curve segments in polycrystalline solar modules
are closer, which makes it more likely that several curve seg-
ments are combined early on.

An average processing time of 1 min and 6 s is substan-
tially faster than manual processing, which takes at least
several minutes. For on-site EL measurements with in-situ
imaging of PV modules, the processing times must be fur-
ther optimized, likely by at least a factor of ten. However,
in other imaging environments, for example material test-
ing laboratories, the runtime is fully sufficient, given that the
handling of each module for EL measurements and the per-
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Fig. 13 Average time taken by individual steps of the segmentation
pipeline, in seconds. The error bars denote the upper range of the stan-
dard deviation

formance evaluation impose much more severe scheduling
bottlenecks.
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Fig. 14 Relative contribution of the average processing time for indi-
vidual pipeline steps to the overall runtime with respect to different
solar module types and both types combined

4.6 Limitations

Mounts that hold PV modules may cause spurious ridge
edges. Early stages of the segmentation focus on ridges
without analyzing thewhole image content, whichmay occa-
sionally lead to spurious edges and eventually to an incorrect
segmentation. Therefore, automatic image cropping prior to
PV module segmentation could help reduce segmentation
failures due to visible mounts.

While the algorithm is able to process disconnected (dark)
cells, rows or columns with more than 50 % of disconnected
cells pose a difficulty in correctly detecting the grid due to
insufficient edge information. However, we observed that
also human experts have problems to determine the contours
under such circumstances.

We also observed that smooth edges can result in segmen-
tation failures. This is because the stickness of smooth edges
is weak and may completely fade away after non-maximum
suppression. This problem is also related to situations where
the inter-cell borders are exceptionally wide. In such cases,
it is necessary to adjust the parameters of the ridgeness filter
and the proximity of the tensor voting.

5 Conclusions

In this work, we presented a fully automatic segmentation
method for precise extraction of solar cells from high reso-
lution EL images. The proposed segmentation is robust to
underexposure, and works robustly in presence of severe
defects on solar cells. This can be attributed to the proposed
preprocessing and the ridgeness filtering, coupledwith tensor
voting to robustly determine the inter-cell borders and bus-
bars. The segmentation is highly accurate, which allows to
use its output for further inspection tasks, such as automatic
classification of defective solar cells and the prediction of
power loss.

We evaluated the segmentation with the Jaccard index on
eight different PV modules consisting of 408 hand-labeled
solar cells. The proposed approach is able to segment solar

cells with an accuracy of 97.80%. With respect to clas-
sification performance, the segmentation pipeline reaches
an F1 score of 97.61%.

Additionally, we compared the proposed method against
the PV module detection approach by Sovetkin and Steland
[86], which is slightly more robust but less accurate than
our method. The comparison also shows that our joint lens
distortion estimation and grid detection approach achieves a
higher accuracy than a method that decouples both steps.

Beyond the proposed applications, the method can serve
as a starting point for bootstrapping deep learning architec-
tures that could be trained end-to-end to directly segment
the solar cells. Future work may include to investigate the
required adaptations and geometric relaxations for using use
the method not only in manufacturing setting but also in the
field. Such relaxations could be achieved, for instance, by
performing the grid detection end-to-end using a CNN.

Given that grid structure is pervasive in many different
problem domains, the proposed joint lens estimation and grid
identificationmay alsofindother applicationfields, for exam-
ple the detection of PV modules in aerial imagery of solar
power plants, building facade segmentation, and checker-
board pattern detection for camera calibration.
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