Hauptseite > Publikationsdatenbank > Main design features of the Rh-based first mirror developed for the ITER CXRS core diagnostics > print |
001 | 892342 | ||
005 | 20250701125912.0 | ||
024 | 7 | _ | |a 10.1016/j.fusengdes.2021.112408 |2 doi |
024 | 7 | _ | |a 0920-3796 |2 ISSN |
024 | 7 | _ | |a 1873-7196 |2 ISSN |
024 | 7 | _ | |a 2128/27725 |2 Handle |
024 | 7 | _ | |a WOS:000672578600002 |2 WOS |
037 | _ | _ | |a FZJ-2021-02010 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Krasikov, Yu. |0 P:(DE-Juel1)130068 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Main design features of the Rh-based first mirror developed for the ITER CXRS core diagnostics |
260 | _ | _ | |a New York, NY [u.a.] |c 2021 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1620128200_524 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The ITER core charge exchange recombination spectroscopy, which contains five in-port optical mirrors, is intended to transfer the visible light emitted by interaction of the plasma with the diagnostic neutral beam to the corresponding spectrometers. The first mirror (M1) is a key and the most vulnerable component of the diagnostics. In order to provide the required mirror lifetime, maintainability and structural integrity, M1 is composed of special materials, i.e. it is made of a thin 1 mm single-crystal rhodium (ScRh) plate diffusion bonded to a specially matched tungsten-copper substrate. A rhodium nanocrystalline coating (NcRh) can be an option.The paper presents the evolution of the M1 design developed for the optical layout of 2018. M1 is adjustable and cleanable with about 100÷500 procedures of 60 MHz plasma discharge. The mirror design is supported by multifield thermal, electromagnetic and structural analyses and uses experimental data of R&Ds made by Forschungszentrum Juelich, Germany. The study confirms the working capacity of the developed mirror solution. |
536 | _ | _ | |a 134 - Plasma-Wand-Wechselwirkung (POF4-134) |0 G:(DE-HGF)POF4-134 |c POF4-134 |x 0 |f POF IV |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Assmann, J. |0 P:(DE-Juel1)129957 |b 1 |
700 | 1 | _ | |a Behr, W. |0 P:(DE-Juel1)133635 |b 2 |u fzj |
700 | 1 | _ | |a Fischer, M. |0 P:(DE-Juel1)151381 |b 3 |u fzj |
700 | 1 | _ | |a Ivashov, I. |0 P:(DE-Juel1)169640 |b 4 |u fzj |
700 | 1 | _ | |a Kotov, V. |0 P:(DE-Juel1)6121 |b 5 |u fzj |
700 | 1 | _ | |a Koppitz, T. |0 P:(DE-Juel1)133697 |b 6 |u fzj |
700 | 1 | _ | |a Krimmer, A. |0 P:(DE-Juel1)130071 |b 7 |u fzj |
700 | 1 | _ | |a Leichtle, D. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Litnovsky, A. |0 P:(DE-Juel1)130090 |b 9 |u fzj |
700 | 1 | _ | |a Marchuk, O. |0 P:(DE-Juel1)5739 |b 10 |u fzj |
700 | 1 | _ | |a Mertens, Ph. |0 P:(DE-Juel1)4596 |b 11 |
700 | 1 | _ | |a Mlynczak, K. |0 P:(DE-Juel1)165367 |b 12 |
700 | 1 | _ | |a Park, JH. |0 0000-0001-9342-1629 |b 13 |
700 | 1 | _ | |a Rasinski, M. |0 P:(DE-Juel1)162160 |b 14 |u fzj |
700 | 1 | _ | |a Schrader, M. |0 P:(DE-Juel1)130150 |b 15 |u fzj |
773 | _ | _ | |a 10.1016/j.fusengdes.2021.112408 |g Vol. 169, p. 112408 - |0 PERI:(DE-600)1492280-0 |p 112408 - |t Fusion engineering and design |v 169 |y 2021 |x 0920-3796 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/892342/files/Postprint_Krasikov.pdf |y Published on 2021-04-05. Available in OpenAccess from 2023-04-05. |
909 | C | O | |o oai:juser.fz-juelich.de:892342 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130068 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129957 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)133635 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)151381 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169640 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)6121 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)133697 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130071 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130090 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)5739 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)4596 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)165367 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)162160 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 15 |6 P:(DE-Juel1)130150 |
913 | 0 | _ | |a DE-HGF |b Energie |l Kernfusion |1 G:(DE-HGF)POF3-170 |0 G:(DE-HGF)POF3-174 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Plasma-Wall-Interaction |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Fusion |1 G:(DE-HGF)POF4-130 |0 G:(DE-HGF)POF4-134 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Plasma-Wand-Wechselwirkung |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-27 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FUSION ENG DES : 2019 |d 2021-01-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-01-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ZEA-1-20090406 |k ZEA-1 |l Zentralinstitut für Technologie |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
980 | _ | _ | |a I:(DE-Juel1)ZEA-1-20090406 |
981 | _ | _ | |a I:(DE-Juel1)ITE-20250108 |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|