000892345 001__ 892345
000892345 005__ 20220930130315.0
000892345 0247_ $$2doi$$a10.1158/1078-0432.CCR-21-0471
000892345 0247_ $$2Handle$$a2128/28444
000892345 0247_ $$2altmetric$$aaltmetric:105271316
000892345 0247_ $$2pmid$$a33947699
000892345 0247_ $$2WOS$$aWOS:000670550600025
000892345 037__ $$aFZJ-2021-02013
000892345 082__ $$a610
000892345 1001_ $$0P:(DE-HGF)0$$aWerner, Jan-Michael$$b0$$eCorresponding author
000892345 245__ $$aDiagnosis of Pseudoprogression Following Lomustine–Temozolomide Chemoradiation in Newly Diagnosed Glioblastoma Patients Using FET-PET
000892345 260__ $$aPhiladelphia, Pa. [u.a.]$$bAACR$$c2021
000892345 3367_ $$2DRIVER$$aarticle
000892345 3367_ $$2DataCite$$aOutput Types/Journal article
000892345 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1628585342_24158
000892345 3367_ $$2BibTeX$$aARTICLE
000892345 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892345 3367_ $$00$$2EndNote$$aJournal Article
000892345 520__ $$aPurpose: The CeTeG/NOA-09 phase III trial demonstrated a significant survival benefit of lomustine–temozolomide chemoradiation in patients with newly diagnosed glioblastoma with methylated O6-methylguanine-DNA methyltransferase (MGMT) promoter. Following lomustine–temozolomide chemoradiation, late and prolonged pseudoprogression may occur. We here evaluated the value of amino acid PET using O-(2-[18F]fluoroethyl)-l-tyrosine (FET) for differentiating pseudoprogression from tumor progression.Experimental Design: We retrospectively identified patients (i) who were treated off-study according to the CeTeG/NOA-09 protocol, (ii) had equivocal MRI findings after radiotherapy, and (iii) underwent additional FET-PET imaging for diagnostic evaluation (number of scans, 1–3). Maximum and mean tumor-to-brain ratios (TBRmax, TBRmean) and dynamic FET uptake parameters (e.g., time-to-peak) were calculated. In patients with more than one FET-PET scan, relative changes of TBR values were evaluated, that is, an increase or decrease of >10% compared with the reference scan was considered as tumor progression or pseudoprogression. Diagnostic performances were evaluated using ROC curve analyses and Fisher exact test. Diagnoses were confirmed histologically or clinicoradiologically.Results: We identified 23 patients with 32 FET-PET scans. Within 5–25 weeks after radiotherapy (median time, 9 weeks), pseudoprogression occurred in 11 patients (48%). The parameter TBRmean calculated from the FET-PET performed 10 ± 7 days after the equivocal MRI showed the highest accuracy (87%) to identify pseudoprogression (threshold, <1.95; P = 0.029). The integration of relative changes of TBRmean further improved the accuracy (91%; P < 0.001). Moreover, the combination of static and dynamic parameters increased the specificity to 100% (P = 0.005).Conclusions: The data suggest that FET-PET parameters are of significant clinical value to diagnose pseudoprogression related to lomustine–temozolomide chemoradiation.
000892345 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000892345 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892345 7001_ $$0P:(DE-HGF)0$$aWeller, Johannes$$b1
000892345 7001_ $$0P:(DE-HGF)0$$aCeccon, Garry$$b2
000892345 7001_ $$0P:(DE-HGF)0$$aSchaub, Christina$$b3
000892345 7001_ $$0P:(DE-Juel1)171739$$aTscherpel, Caroline$$b4
000892345 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b5
000892345 7001_ $$0P:(DE-HGF)0$$aBauer, Elena K.$$b6
000892345 7001_ $$0P:(DE-HGF)0$$aSchäfer, Niklas$$b7
000892345 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b8
000892345 7001_ $$0P:(DE-HGF)0$$aBaues, Christian$$b9
000892345 7001_ $$0P:(DE-HGF)0$$aCelik, Eren$$b10
000892345 7001_ $$0P:(DE-HGF)0$$aMarnitz, Simone$$b11
000892345 7001_ $$0P:(DE-HGF)0$$aKabbasch, Christoph$$b12
000892345 7001_ $$0P:(DE-HGF)0$$aGielen, Gerrit H.$$b13
000892345 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b14
000892345 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b15
000892345 7001_ $$0P:(DE-HGF)0$$aHerrlinger, Ulrich$$b16
000892345 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b17
000892345 773__ $$0PERI:(DE-600)2036787-9$$a10.1158/1078-0432.CCR-21-0471$$gVol. 27, no. 13, p. 3704 - 3713$$n13$$p3704 - 3713$$tClinical cancer research$$v27$$x1078-0432$$y2021
000892345 8564_ $$uhttps://juser.fz-juelich.de/record/892345/files/Invoice_APC600213430.pdf
000892345 8564_ $$uhttps://juser.fz-juelich.de/record/892345/files/Werner_2021_Clin%20Cancer%20Res_Diagnosis%20of%20pseudoprogression....pdf$$yPublished on 2021-05-04. Available in OpenAccess from 2022-05-04.
000892345 8767_ $$8APC600213430$$92021-05-03$$d2021-05-06$$eColour charges$$jZahlung erfolgt$$zinsgesamt 2850,- USD, Belegnr. 1200166840
000892345 8767_ $$8APC600213430$$92021-05-03$$d2021-05-06$$ePage charges$$jZahlung erfolgt$$zinsgesamt 2850,- USD, Belegnr. 1200166840
000892345 909CO $$ooai:juser.fz-juelich.de:892345$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000892345 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b5$$kFZJ
000892345 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b8$$kFZJ
000892345 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b14$$kFZJ
000892345 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b15$$kFZJ
000892345 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b17$$kFZJ
000892345 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000892345 9141_ $$y2021
000892345 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000892345 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIN CANCER RES : 2019$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bCLIN CANCER RES : 2019$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-03
000892345 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000892345 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000892345 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000892345 980__ $$ajournal
000892345 980__ $$aVDB
000892345 980__ $$aUNRESTRICTED
000892345 980__ $$aI:(DE-Juel1)INM-3-20090406
000892345 980__ $$aI:(DE-Juel1)INM-4-20090406
000892345 980__ $$aAPC
000892345 9801_ $$aAPC
000892345 9801_ $$aFullTexts