001     892347
005     20220131120433.0
024 7 _ |a 10.5194/egusphere-egu21-590
|2 doi
024 7 _ |a 2128/30442
|2 Handle
037 _ _ |a FZJ-2021-02015
100 1 _ |a Ma, Yueling
|0 P:(DE-Juel1)176840
|b 0
|e Corresponding author
111 2 _ |a EGU General Assembly 2021
|c Online
|d 2021-04-19 - 2021-04-30
|w Online
245 _ _ |a Knowledge transfer from simulation to reality via Long Short-Term Memory networks:  Estimating groundwater table depth anomalies over Europe
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1642778824_21910
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Near real-time groundwater table depth measurements are scarce over Europe, leading to challenges in monitoring groundwater resources at the continental scale. In this study, we leveraged knowledge learned from simulation results by Long Short-Term Memory (LSTM) networks to estimate monthly groundwater table depth anomaly (wtda) data over Europe. The LSTM networks were trained, validated, and tested at individual pixels on anomaly data derived from daily integrated hydrologic simulation results over Europe from 1996 to 2016, with a spatial resolution of 0.11° (Furusho-Percot et al., 2019), to predict monthly wtda based on monthly precipitation anomalies (pra) and soil moisture anomalies (θa). Without additional training, we directly fed the networks with averaged monthly pra and θa data from 1996 to 2016 obtained from commonly available observational datasets and reanalysis products, and compared the network outputs with available borehole in situ measured wtda. The LSTM network estimates show good agreement with the in situ observations, resulting in Pearson correlation coefficients of regional averaged wtda data in seven PRUDENCE regions ranging from 42% to 76%, which are ~ 10% higher than the original simulation results except for the Iberian Peninsula. Our study demonstrates the potential of LSTM networks to transfer knowledge from simulation to reality for the estimation of wtda over Europe. The proposed method can be used to provide spatiotemporally continuous information at large spatial scales in case of sparse ground-based observations, which is common for groundwater table depth measurements. Moreover, the results highlight the advantage of combining physically-based models with machine learning techniques in data processing. Reference:Furusho-Percot, C., Goergen, K., Hartick, C., Kulkarni, K., Keune, J. and Kollet, S. (2019). Pan-European groundwater to atmosphere terrestrial systems climatology from a physically consistent simulation. Scientific Data, 6(1).
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a ERA-PLANET - The European network for observing our changing planet (689443)
|0 G:(EU-Grant)689443
|c 689443
|f H2020-SC5-2015-one-stage
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 1
700 1 _ |a Bayat, Bagher
|0 P:(DE-Juel1)177038
|b 2
700 1 _ |a Kollet, Stefan
|b 3
773 _ _ |a 10.5194/egusphere-egu21-590
856 4 _ |u https://juser.fz-juelich.de/record/892347/files/EGU21-590-print.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892347
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129506
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177038
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21