000892348 001__ 892348
000892348 005__ 20240711085646.0
000892348 0247_ $$2doi$$a10.1111/jace.17847
000892348 0247_ $$2ISSN$$a0002-7820
000892348 0247_ $$2ISSN$$a1551-2916
000892348 0247_ $$2Handle$$a2128/28060
000892348 0247_ $$2WOS$$aWOS:000646668400001
000892348 037__ $$aFZJ-2021-02016
000892348 082__ $$a660
000892348 1001_ $$0P:(DE-Juel1)166597$$aMishra, Tarini Prasad$$b0$$eCorresponding author
000892348 245__ $$aDevelopment of a processing map for safe flash sintering of gadolinium‐doped ceria
000892348 260__ $$aWesterville, Ohio$$bSoc.$$c2021
000892348 3367_ $$2DRIVER$$aarticle
000892348 3367_ $$2DataCite$$aOutput Types/Journal article
000892348 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625897427_30350
000892348 3367_ $$2BibTeX$$aARTICLE
000892348 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892348 3367_ $$00$$2EndNote$$aJournal Article
000892348 520__ $$aFlash sintering was discovered in 2010, where a dog- bone- shaped zirconia sample was sintered at a furnace temperature of 850°C in <5s by applying electric fields of ~100Vcm−1 directly to the specimen. Since its discovery, it has been successfully ap-plied to several if not all oxides and even ceramics of complex compositions. Among several processing parameters in flash sintering, the electrical parameters, i.e., electric field and electric current, were found to influence the onset temperature for flash and the degree of densification respectively. In this work, we have systematically investi-gated the influence of the electrical parameters on the onset temperature, densification behavior, and microstructure of the flash sintered samples. In particular, we focus on the development of a processing map that delineates the safe and fail regions for flash sintering over a wide range of applied current densities and electric fields. As a proof of concept, gadolinium- doped ceria (GDC) is shown as an example for developing of such a processing map for flash sintering, which can also be transferred to different materials systems. Localization of current coupled with hot spot formation and crack formation is identified as two distinct failure modes in flash sintering. The grain size distribution across the current localized and nominal regions of the specimen was analyzed. The specimens show exaggerated grain growth near the positive electrode (anode). The region adjacent to the negative electrodes (cathode) showed retarded densification with large concentration of isolated pores. The electrical conductiv-ity of the flash sintered and conventional sintered samples shows identical electrical conductivity. This quantitative analysis indicates that similar sintering quality of the GDC can be achieved by flash sintering at temperature as low as 680°C.
000892348 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000892348 536__ $$0G:(DE-HGF)POF4-123$$a123 - Chemische Energieträger (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000892348 536__ $$0G:(GEPRIS)274005202$$aDFG project 274005202 - SPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202)$$c274005202$$x2
000892348 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x3
000892348 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892348 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b1
000892348 7001_ $$00000-0001-8556-9797$$aRaj, Rishi$$b2
000892348 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3
000892348 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b4
000892348 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.17847$$gp. jace.17847$$n9$$p 4316-4328$$tJournal of the American Ceramic Society$$v104$$x1551-2916$$y2021
000892348 8564_ $$uhttps://juser.fz-juelich.de/record/892348/files/Processing%20Map%20Gadolinium%20doped%20Ceria.1.pdf$$yOpenAccess
000892348 8564_ $$uhttps://juser.fz-juelich.de/record/892348/files/jace.17847.pdf$$yOpenAccess
000892348 8767_ $$d2021-05-05$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000892348 909CO $$ooai:juser.fz-juelich.de:892348$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000892348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166597$$aForschungszentrum Jülich$$b0$$kFZJ
000892348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b1$$kFZJ
000892348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000892348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b4$$kFZJ
000892348 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000892348 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
000892348 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000892348 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x1
000892348 9141_ $$y2021
000892348 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2019$$d2021-01-27
000892348 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000892348 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000892348 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892348 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000892348 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000892348 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000892348 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000892348 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000892348 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000892348 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000892348 920__ $$lyes
000892348 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000892348 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000892348 9801_ $$aAPC
000892348 9801_ $$aFullTexts
000892348 980__ $$ajournal
000892348 980__ $$aVDB
000892348 980__ $$aUNRESTRICTED
000892348 980__ $$aI:(DE-Juel1)IEK-1-20101013
000892348 980__ $$aI:(DE-82)080011_20140620
000892348 980__ $$aAPC
000892348 981__ $$aI:(DE-Juel1)IMD-2-20101013