000892356 001__ 892356
000892356 005__ 20240712113250.0
000892356 0247_ $$2doi$$a10.1039/D1TA01002F
000892356 0247_ $$2ISSN$$a2050-7488
000892356 0247_ $$2ISSN$$a2050-7496
000892356 0247_ $$2Handle$$a2128/27888
000892356 0247_ $$2altmetric$$aaltmetric:104230899
000892356 0247_ $$2WOS$$aWOS:000644931100001
000892356 037__ $$aFZJ-2021-02017
000892356 082__ $$a530
000892356 1001_ $$0P:(DE-HGF)0$$aWagner, Maximilian$$b0$$eCorresponding author
000892356 245__ $$aStudy on solid electrolyte catalyst poisoning in solid acid fuel cells
000892356 260__ $$aLondon [u.a.]$$bRSC$$c2021
000892356 3367_ $$2DRIVER$$aarticle
000892356 3367_ $$2DataCite$$aOutput Types/Journal article
000892356 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622469671_7876
000892356 3367_ $$2BibTeX$$aARTICLE
000892356 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892356 3367_ $$00$$2EndNote$$aJournal Article
000892356 520__ $$aSolid acid fuel cells operate at intermediate temperatures utilizing a solid electrolyte (CsH2PO4, CDP). However, relatively little is known about the degradation mechanism and the topic is rarely addressed. Phosphate poisoning of the platinum catalyst is a well-known problem for fuel cells working with H3PO4 as electrolyte. With CsH2PO4 as electrolyte, phosphate poisoning is therefore likely to occur as well. In this study we show a fast and reversible degradation behavior of solid acid fuel cells and associate it with poisoning of the catalyst. After a decline in power output of around 50% within hours, an in situ reactivation of the cell to almost the initial performance was possible by multiple cycling between the voltage of 0.1 V and 2.0 V. A limitation of the effect to the cathode is shown and the underlying process was analyzed by changes in the low frequency domain of impedance measurements, which is indicating a catalyst poisoning, and by the dependency from the upper vertex voltage. By employing a micro porous current collector, a decrease in the low frequency domain as well as enhanced stability (<125 μV h−1 at 0.43 V) was achieved. This work extends from a detailed insight in the degradation mechanism of solid acid fuel cells, to providing a working electrode modification to prevent poisoning, establishing a promising electrode stability on a laboratory scale.
000892356 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000892356 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000892356 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892356 7001_ $$0P:(DE-HGF)0$$aLorenz, Oliver$$b1
000892356 7001_ $$0P:(DE-Juel1)176513$$aLohmann-Richters, Felix P.$$b2
000892356 7001_ $$00000-0002-7094-9313$$aVarga, Áron$$b3
000892356 7001_ $$00000-0001-6032-1680$$aAbel, Bernd$$b4
000892356 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D1TA01002F$$gp. 10.1039.D1TA01002F$$p11347-11358$$tJournal of materials chemistry / A$$v9$$x2050-7496$$y2021
000892356 8564_ $$uhttps://juser.fz-juelich.de/record/892356/files/d1ta01002f.pdf$$yRestricted
000892356 8564_ $$uhttps://juser.fz-juelich.de/record/892356/files/Wagner_Maximilian%20et%20al.pdf$$yPublished on 2021-04-19. Available in OpenAccess from 2022-04-19.
000892356 909CO $$ooai:juser.fz-juelich.de:892356$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892356 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176513$$aForschungszentrum Jülich$$b2$$kFZJ
000892356 9130_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000892356 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000892356 9141_ $$y2021
000892356 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000892356 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000892356 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000892356 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000892356 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000892356 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000892356 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2019$$d2021-01-28
000892356 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000892356 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-01-28$$wger
000892356 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2019$$d2021-01-28
000892356 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-28$$wger
000892356 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000892356 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000892356 920__ $$lyes
000892356 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000892356 9801_ $$aFullTexts
000892356 980__ $$ajournal
000892356 980__ $$aVDB
000892356 980__ $$aUNRESTRICTED
000892356 980__ $$aI:(DE-Juel1)IEK-14-20191129
000892356 981__ $$aI:(DE-Juel1)IET-4-20191129