001     892356
005     20240712113250.0
024 7 _ |a 10.1039/D1TA01002F
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 2128/27888
|2 Handle
024 7 _ |a altmetric:104230899
|2 altmetric
024 7 _ |a WOS:000644931100001
|2 WOS
037 _ _ |a FZJ-2021-02017
082 _ _ |a 530
100 1 _ |a Wagner, Maximilian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Study on solid electrolyte catalyst poisoning in solid acid fuel cells
260 _ _ |a London ˜[u.a.]œ
|c 2021
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1622469671_7876
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid acid fuel cells operate at intermediate temperatures utilizing a solid electrolyte (CsH2PO4, CDP). However, relatively little is known about the degradation mechanism and the topic is rarely addressed. Phosphate poisoning of the platinum catalyst is a well-known problem for fuel cells working with H3PO4 as electrolyte. With CsH2PO4 as electrolyte, phosphate poisoning is therefore likely to occur as well. In this study we show a fast and reversible degradation behavior of solid acid fuel cells and associate it with poisoning of the catalyst. After a decline in power output of around 50% within hours, an in situ reactivation of the cell to almost the initial performance was possible by multiple cycling between the voltage of 0.1 V and 2.0 V. A limitation of the effect to the cathode is shown and the underlying process was analyzed by changes in the low frequency domain of impedance measurements, which is indicating a catalyst poisoning, and by the dependency from the upper vertex voltage. By employing a micro porous current collector, a decrease in the low frequency domain as well as enhanced stability (<125 μV h−1 at 0.43 V) was achieved. This work extends from a detailed insight in the degradation mechanism of solid acid fuel cells, to providing a working electrode modification to prevent poisoning, establishing a promising electrode stability on a laboratory scale.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lorenz, Oliver
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lohmann-Richters, Felix P.
|0 P:(DE-Juel1)176513
|b 2
700 1 _ |a Varga, Áron
|0 0000-0002-7094-9313
|b 3
700 1 _ |a Abel, Bernd
|0 0000-0001-6032-1680
|b 4
773 _ _ |a 10.1039/D1TA01002F
|g p. 10.1039.D1TA01002F
|0 PERI:(DE-600)2702232-8
|p 11347-11358
|t Journal of materials chemistry / A
|v 9
|y 2021
|x 2050-7496
856 4 _ |u https://juser.fz-juelich.de/record/892356/files/d1ta01002f.pdf
|y Restricted
856 4 _ |y Published on 2021-04-19. Available in OpenAccess from 2022-04-19.
|u https://juser.fz-juelich.de/record/892356/files/Wagner_Maximilian%20et%20al.pdf
909 C O |o oai:juser.fz-juelich.de:892356
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176513
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2019
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21