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Comprehensive verbal fluency 
features predict executive function 
performance
Julia Amunts1,2*, Julia A. Camilleri1,2, Simon B. Eickhoff1,2, Kaustubh R. Patil1,2, 
Stefan Heim3,4, Georg G. von Polier1,5,6 & Susanne Weis1,2 

Semantic verbal fluency (sVF) tasks are commonly used in clinical diagnostic batteries as well as in a 
research context. When performing sVF tasks to assess executive functions (EFs) the sum of correctly 
produced words is the main measure. Although previous research indicates potentially better insights 
into EF performance by the use of finer grained sVF information, this has not yet been objectively 
evaluated. To investigate the potential of employing a finer grained sVF feature set to predict EF 
performance, healthy monolingual German speaking participants (n = 230) were tested with a 
comprehensive EF test battery and sVF tasks, from which features including sum scores, error types, 
speech breaks and semantic relatedness were extracted. A machine learning method was applied to 
predict EF scores from sVF features in previously unseen subjects. To investigate the predictive power 
of the advanced sVF feature set, we compared it to the commonly used sum score analysis. Results 
revealed that 8 / 14 EF tests were predicted significantly using the comprehensive sVF feature set, 
which outperformed sum scores particularly in predicting cognitive flexibility and inhibitory processes. 
These findings highlight the predictive potential of a comprehensive evaluation of sVF tasks which 
might be used as diagnostic screening of EFs.

Executive functions (EFs) comprise cognitive processes that enable goal directed behaviour1. Previous litera-
ture investigated the general cognitive processes that fall under the umbrella term of EFs and encompass both 
lower-level cognitive processes and higher-level processes. The former include working memory, inhibition and 
cognitive flexibility which represent the building blocks for higher-level processes such as planning, reasoning 
and problem solving2.

While the number and definition of different EF subprocesses remains controversial3, there is strong evidence 
that EFs are impaired in a large number of neurological4,5 and psychiatric6,7 diseases. Therefore, the measurement 
of EFs forms a crucial part of the clinical neuropsychological diagnostical routine in order to detect and specify 
impairments such as frontal lobe damages8. Multiple test batteries such as the Delis-Kaplan Executive Function 
System (D-KEFS)9 and the Vienna Test System10 provide numerous EF tests to capture a wide range of the differ-
ent aspects of EFs. However, many EF tests are mainly based on pen-and-paper versions which tend to be time 
consuming while also lacking accuracy. Moreover, there are discrepancies between unnatural test instructions 
and naturalistic tasks in everyday life which leads to a lack of ecological validity of commonly used EF tests11.

There is consensus, that EFs play a crucial role in speech production processes12,13. Cognitive flexibility is 
required to activate general lexical concepts while later working memory capacities are needed for remembering 
already produced words. Here, the episodic buffer and phonological loop, which are also related to the working 
memory system, serve as central components12. Since EFs are also involved in speech production, verbal fluency 
(VF) tests are integrated in several clinical diagnostic batteries to assess EFs. E.g. in B-CATS—an assessment 
tool for schizophrenia; NIH stroke scale – assessment for quantifying stroke severity; BCSB—screening for mild 
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Alzheimer´s disease; and D-KEFS—broadly applicable assessment used for assessing diseases such as epilepsy 
or Parkinson´s disease.

Two different types of VF tests are commonly used. On the one hand, VF is assessed with a lexical task. In 
this task participants are asked to produce as many words as possible with a specific initial letter within a specific 
timeframe (usually 1–2 min). Due to the fact that all requested words start with the same phoneme, the lexical 
VF task is also commonly referred to as phonological VF task. On the other hand, the semantic VF (sVF) task 
requires the production of words belonging to a specific category (e.g. animals or fruits), regardless of the initial 
letter of the word. The lexical VF task is driven by phonological and lexical cues, whereas the sVF task requires 
attributes of a specific semantic category.

Within each type of the VF task, it is also possible to modulate the demand on EFs by applying a switching 
component. Here, participants are asked to switch between two different categories in alternating order within 
the same task (e.g. fruits-jobs). VF performance is generally evaluated by calculating the total number of correctly 
produced items. However, in the neurological literature, it has been shown that specific patterns of VF impair-
ment greatly depend on the damaged brain regions14,15. Thus, studies suggest the need for a more differentiated 
analysis of VF performance16.

In general, there is consensus on the involvement of EFs in the VF task in healthy controls17 as well as their 
impairment in patients15,18. In detail, it is assumed that semantic knowledge and memory as well as cognitive 
flexibility are required to build semantic associations in sVF tasks whereas the lexical VF tasks require the sup-
pression of grouping words with shared associations19. Additionally, in both types of VF tasks, inhibition is 
presumably needed to suppress competitive responses and to avoid perseveration errors20,21, while attention, 
updating and working memory processes are simultaneously involved to keep the processing speed high, to 
remember already produced items and to produce as many items as possible12.

Although previous findings undergirded the involvement of executive control processes in the VF task22, 
the diagnostic validity of VF tasks to assess EF performance remains controversial23,24. In particular, it has been 
found to be affected by multiple factors such as the underlying language component in the VF task, underlying 
cognitive processes such as intelligence, and fluctuating hormonal levels25,26. Moreover, the literature is not in 
agreement with regards to the specific relationship between VF and EF. Various studies report a positive cor-
relation between working memory, inhibition, cognitive flexibility performance and the total score of produced 
words22,27. In contrast, other studies failed to identify a clear relationship between VF performance and EFs in 
one or more EF domains24,28. Notably, in previous studies, classical statistic methods were used to e.g. investigate 
group comparisons of EF performance in patients and healthy controls. Applying correlational analyses, studies 
investigated linear relationships of VF sum scores and different EF domains29.

However, within the last years VF tasks per se have gained more interest as a predictive tool for clinical deci-
sion making, e.g. in schizophrenia30 or mild cognitive impairments31 since they offer an alternative to the highly 
time-consuming testing procedure of EFs11. The growing interest in the predictive value of VF tasks might be a 
result of the increasing use of machine learning algorithms investigating speech production to predict disease 
specific properties32–34. The main appeal of the machine learning approach is its ability to train a predictive 
model by identifying patterns in high dimensional data which can be subsequently used to make predictions in 
unseen data. Additionally, interpreting models can provide information with regards to which specific features 
contribute most to accurate predictions. Based on a data-driven learning, predictive modelling enables research-
ers to capture (non)-linear relationships, generalize associations and to potentially subsequently transfer these 
to a clinical context.

Although the VF task is commonly evaluated based on the total sum of correct produced words35–37, other 
variables can also be employed to gain deeper insights into cognitive performance.

Recent studies have demonstrated the potential of advanced parameters taken from the VF task, i.e. error 
types38, latencies39 and semantic distances18 to complement the common analysis of the total sum of words. 
These additional variables, assessed within the sVF task, were shown to reflect the complex involvement of 
executive processes in disorders such as dementia as well as in better differentiation between patients and healthy 
controls16,40.

To interpret VF performance in more detail, studies have also investigated error types that occurred in the 
course of the VF task such as those based on the breaking of sVF-specific rules (e.g. naming words from a dif-
ferent category, creating neologisms) and category errors. Perseveration and category errors are particularly 
reported in the switching VF task when participants fail to switch to the second category, name words from 
a different category or repeat the same category twice37. Thus, perseveration and category errors can provide 
qualitative information when measuring VF performance, in addition to the commonly used total sum of words.

Additionally, information of the VF task can also be assessed on a semantic level, analysing semantic related-
ness of produced words. This concept was first investigated by Troyer et al.41 who manually organized produced 
words in the sVF task into conceptually related clusters and switches. Specifically, semantically related words 
were clustered based on specific subcategories41. For example, animals were clustered based on their living 
environment, human use and zoological categories. According to these clusters, which are usually defined as a 
minimum of a two-word-sequence within the same subcategory, switches were calculated as the total number 
of shifts between these clusters41. Here, two types of switches were defined: While cluster switches describe a 
transition between multiword and adjacent clusters, hard switches represent transitions between a cluster and 
non-clustered words42. Later research showed that the ability to create new subcategories and generate new cues is 
more important for performing the sVF task than creating large cluster sizes43. Moreover, authors highlighted the 
importance of working memory capacity for self-generating category cues in healthy participants43 and suggested 
the sVF task as a diagnostic tool in cognitive impairment44,45. Nevertheless, this assessment of semantic infor-
mation from the sVF task was traditionally done manually and thus was highly time-consuming and partially 
subjective due to the manual determination and assignment of subcategories46,47. However, this problem can be 
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addressed with the help of computational linguistics providing automated computational approaches (e.g. Latent 
semantic analysis48, Word2Vec49). Nowadays large text corpora and fine grained information of semantic relat-
edness are available (e.g. WordNet50, DISCO51). In general, different conceptual structures are implemented in 
these models. On the one hand, some systems provide the hierarchical structure of a lexical semantic net52 based 
on semantic concepts (e.g. fishes, birds, mammals)50. In contrast to this hierarchical and ontological approach, 
vector-based systems rely on the co-occurrence of words within a big text corpus. Here, words are represented as 
a point in a multi-dimensional space creating word embeddings53. Applying these computerized and automated 
systems, studies were able to identify dementia risk in healthy participants based on semantic relatedness16 and 
to distinguish between patients with forms of disorganization and healthy controls54.

Alongside the semantic information, the sVF task also provides prosodic information such as speech latencies 
(speech pauses between each word). Latencies convey information about the approximate time needed to access 
lexical items13,55. Although there is little literature on the relationship between speech latencies in the VF task and 
EF performance, some findings indicate that it might be meaningful39,43. Specifically, studies suggest that a higher 
incidence of unfilled pauses are more likely to occur in situations in which participants are confronted with a 
higher planning load56. Other studies also report a relationship between prosodic information and EF demands 
showing a decreased production of words within the progress of the VF task39. Since a decrease of the number of 
produced words in the VF task also indicates an increase of speech latencies39 these findings suggest that speech 
latencies could provide additional information on VF performance with respect to the involvement of EFs.

In summary, previous studies indicate the potential of additional quantitative measures for evaluating sVF 
performance to gain better insight into cognitive processes. However, diagnostic batteries used in the clinical 
context as well as in the scientific environment still heavily rely on the sole use of the sum of correct words as the 
main indicator of EF performance. Consequently, the aim of the present study was to investigate the predictive 
power of a comprehensive set of sVF measures and compare it to the commonly used sum score analysis. As a 
first step into deeper insights of the predictive power of the VF task, we focus on the semantic VF task which 
allowed us to exploit the vast information within the semantic relatedness features. In this exploratory study, 
machine learning methods were applied to predict performances of well validated but highly time-consuming 
EF tests from a broad set of objective and mainly computerized VF measurements in unseen participants. We 
expected the extended sVF feature set to outperform the basic analysis of sum scores in predicting EF test results.

Methods
Participants.  In this study, 230 healthy participants with an age range of 20–55 years (mean age 35.2 ± 11.1; 
92 males) were tested. Before the actual testing session, participants were asked for previously detected diag-
noses. Only participants without neurological or psychiatric diagnoses were included in this study. Moreover, 
participants were monolingual German speakers, i.e. their native language was German and they did not learn 
an additional language before going to school. Participants received different levels of education (finished mid-
dle school: 8, professional school/job training: 63, finished high school with a university-entrance diploma: 69, 
university degree: 90). The recruitment took place in North Rhine-Westphalia (Germany) via social networks 
and the Forschungszentrum Jülich mailing list. Participants were tested at the Forschungszentrum Jülich, and 
the testing session included an EF test battery together with VF tasks, with a duration of 150–180 min depend-
ing on the individual time needed for instructions and the speed with which the participants passed the tests. A 
remuneration fee of €50 was paid. All experiments were performed in accordance with relevant guidelines and 
regulations. Moreover, informed consent was obtained from all participants. Collection and analyses of the data 
presented here was approved by the ethics committee at Heinrich-Heine University Düsseldorf.

Executive function assessment.  The EF test battery consisted of 14 computerized versions of commonly 
used neuropsychological tests covering domains of cognitive flexibility, working memory and inhibition. While 
11 of these tests were taken from the Vienna Testsystem10, three were designed with PsyToolkit57. The Vienna 
Testsystem10 is a standardized computerized test battery providing numerous EF tests and test manuals. Every 
EF test provided multiple variables which were extracted automatically by the respective test system. While 
some of these variables represent main variables, others solely include processing time information which are 
not directly linked to the EF performance. EF tests which were designed within PsyToolkit57 do not come with 
associated test manuals and the selection of variables of these tests was thus based on previous literature58–60.

Cognitive flexibility was assessed using five tests, namely, the Trail Making Test61 (TMT), Raven´s Standard 
Progressive Matrices62 (SPM), Wisconsin Card Sorting Test63 (WCST), Tower of London (TOL)64 and Cued-Task 
Switching65 (SWITCH).

Working memory performance was examined using three tests: N-back non-verbal Test66 (NBN), Non-verbal 
Learning Test67 (NVLT) and Corsi Block Tapping Test68 (CORSI).

Inhibition was tested using Stop-Signal Task69 (STOP), Simon Task70 (SIMON) and Stroop Test71 (STROOP).
Additionally, we also assessed divided and spatial attention (WAF-G72, WAF-R72) as well as vigilance (Mack-

worth Clocktest60 (CLOCK)). In total, 68 variables were extracted from EF tests. The full set of EF test variables 
is provided in the supplementary material (Table S1).

Semantic verbal fluency tasks.  The sVF tasks were based on the Regensburger Wortflüssigkeitstest37 
(RWT) which is equivalent to the English Controlled Oral Word Association Test73 (COWAT). The German 
standardized neuropsychological version of the VF task was used due to language-specific differences in the fre-
quency and usage of letters and categories36. Two of the tasks were simple sVF tasks in which the participant had 
to name animals (t1) and jobs (t2). The third sVF task (t3) was a switching task in which the participant switched 
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between fruits and sports within the same task. Each of the three tasks was performed for 2 min. The sVF tasks 
were presented with Presentation software74 and the participant´s responses were recorded automatically.

Following the testing session, the recorded speech was transcribed and words were coded manually as being 
either correct answers or errors. Furthermore, errors were differentiated into perseveration and category errors. 
Sum scores of each sVF tasks separately, sum score of correct produced words across all sVF and errors (per-
severation, category errors) were included in the prediction analysis. In general, the sum scores solely include 
correct produced items in all three sVF tasks. A list of extracted sVF features is shown in Table 1.

Speech latencies were automatically detected and manually corrected using PRAAT​75, and the mean of the 
speech latencies within each task was calculated. Moreover, the task was divided into four 30-seconds intervals 
(i1, i2, i3, i4) and the mean of the speech latencies within each interval was determined. Additionally, these means 
of intervals were then used to determine an increase or decrease of speech latencies within each task (i4-i1). 
Latency means of each task and of each interval as well as latency differences were defined as sVF features for 
prediction analysis.

Semantic distances were computed using two different approaches to ensure that the results of prediction 
analysis are not dependent on a specific semantic system. One of the semantic systems was a hierarchical struc-
tured lexical-semantic net of GermaNet52 and GermaNet-Pathfinder76. Specifically, this lexical network is par-
titioned into various sets of semantic concepts (synsets) that are intertwined by semantic relations and create 
nodes. These synsets are related conceptually in different ways including, hypernymy, part-whole relations, 
entailment and causation52, leading to hierarchical-structured subcategories. GermaNet-Pathfinder76 provides 
different measurements77 for the determination of how closely two nouns are related to each other. In this study, 
we selected a path-based measure which describes the relatedness between concepts. In detail, the path-based 
system takes the distance between two synset nodes and the longest possible shortest path between any two 
nodes in GermaNet into account.

length(s1,s2) = shortest path between synset s1 and synset s2.
MAXSHORTESTPATH = maximum of all shortest paths within GermaNet.
Applying this formula, semantic relatedness is represented by values between 0 and 1. While closely related 

words lead to values approximating 1 (German Shepard x Labrador → sim = 0.94), more distanced word pairs 
lead to smaller values (e.g. German Shepard x dolphin → sim = 0.77).

The other semantic system that was used to determine semantic similarity between words was DISCO78 apply-
ing a Word2Vec49 approach. This system is based on co-occurrences in large text corpora. Specifically, this corpus 
contains 1.5 billion tokens including German Wikipedia entries, newspaper articles, parliamentary debates, 
movie subtitles and more. Each unique word is represented by a word vector and is part of the vector space. 

sim(s1, s2) =
MAXSHORTESTPATH − length(s1, s2)

MAXSHORTESTPATH

Table 1.   Overview of Verbal fluency features.

VF features Description

Correct words t1 + t2 + t3 Sum of all correct produced words in task1, task2, task3

Correct words Sum of correct produced words in each task

Switch coefficient Relationship of correct items in simple and switching tasks; switching coefficient = sum3/((sum1 + sum2)/2))

Repetition error Repetition errors in task 1, task 2

Category error Category errors in task 3

Latency mean Mean of speech breaks in each task

Latencies 1st quarter Mean of speech breaks in seconds 0–30 (i1) for each task

Latencies 2nd quarter Mean of speech breaks in seconds 31–60 (i2) for each task

Latencies 3rd quarter Mean of speech breaks in seconds 61–90 (i3) for each task

Latencies 4th quarter Mean of speech breaks in seconds 91–120 (i4) for each task

Latency difference Progress of speech breaks (i4-i1) in each task

Sequential mean Semantic mean of all sequential word pairs in each task; computed with GermaNet (hierachical)

Cumulative mean Semantic mean of all possible word pairs (cumulative) in each task; computed with GermaNet (hierarchical)

Sequential mean cat1 t3 Semantic mean of all sequential word pairs (sequential) in catergory 1 (sports) of switching task; computed 
with GermaNet (hierarchical)

Sequential mean cat2 t3 Semantic mean of all sequential word pairs (sequential) in catergory 2 (fruits) of switching task; computed 
with GermaNet (hierarchical)

Sequential mean DIS Semantic mean of all sequential word pairs in each task; computed with DISCO (Word2Vec)

Cumulative mean DIS Cumulative mean of all possible word pairs in each task; computed with DISCO (Word2Vec)

Sequential mean cat1 t3 DIS Semantic mean of all sequential word pairs in category 1 (sports) of switching task; computed with DISCO 
(Word2Vec)

Sequential mean cat2 t3 DIS Semantic mean of all sequential word pairs in category 2 (fruits) of switching task; computed with DISCO 
(Word2Vec)
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Within this vector space, word vectors are located based on shared common contexts building word embeddings. 
As in GermaNet52, a high semantic similarity is represented by numbers approximating 1.

Each sVF task of the participants was analysed automatically using GermaNet Pathfinder76 and DISCO API78. 
For our feature-set which was later used for the prediction analysis, two different types of semantic relations 
were extracted: (1) Sequential distance was computed across each consecutive word pair in order of the pro-
duced words. (2) Cumulative distance was computed over the entire task regardless of the order in which they 
appear within the task. As an output, the relatedness between each word-pair was extracted and the mean of all 
semantic relations within one task was calculated. In the case that GermaNet contained more than one synset for 
one word, the synset with closest relatedness to the paired word was selected. Moreover, missing lexical entries 
in GermaNet or DISCO led to a deletion of the corresponding word pair. All semantic information, including 
means of sequential and cumulative distances of both systems (GermaNet and DISCO) were added as features 
to prediction analysis.

Altogether, 43 features were extracted from the sVF tasks containing information of sum of correct words, 
error types, speech latencies and semantic distances calculated with two different systems. A complete overview 
of VF feature scores is provided in the supplementary material (Table S2).

Machine learning analysis.  In this study, we applied a machine approach using a cross-validation proce-
dure. Here, just parts of the data are used to train the model while the other part is used to validate the model; 
i.e. EF scores were predicted in unseen participants which allows for generalization of results to a certain degree.

EF performance was predicted from sVF variables (features) applying supervised learning via random 
forests79,80 (RF). The sVF features were used to predict each of the 68 EF scores (targets) in separate and inde-
pendent analyses. Generally speaking, RF creates a “forest” of decision trees as weak learners by randomly 
sampling the features before learning each decision tree. The trees are used as an ensemble and the prediction 
of individual trees is averaged to get the final prediction81. In the present study 100 trees were used to compute 
prediction analysis.

Previous work indicates that performance in the VF task is negatively related to age82,83. Moreover, sex was 
found to be associated with differential solving strategies in the VF task84. Likewise, a higher level of education 
was associated with better performance in VF tasks82,85. Therefore, data was transformed to z-scores and sex, 
age and education were regressed out from the sVF features within cross-validation. A tenfold cross-validation 
procedure was performed for which the data set was randomly split into 10 sets, 9 of which were used for training 
while the 10th set was held back and used to assess the prediction performance in previously unseen data. Ten 
repetitions of the tenfold cross-validation were performed and thus 100 prediction models for each EF target 
were computed. Prediction performance was assessed by computing the mean correlation (Pearson) between 
real and predicted values within cross-validation folds and subsequently across all repetitions. EF targets which 
were predicted from sVF features at a significance level of p < 0.01 were considered highly predictable EF targets.

To compare the predictive power of the comprehensive and the classical feature set, the prediction analysis 
was computed for classical sVF features, solely containing information from sum scores of sVF tasks.

The sVF features which contributed most strongly to the prediction analyses of each highly predictable EF 
target were identified. Feature importance was defined by the permutation of out-of-bag predictor observations 
as implemented in Matlab86. The top five sVF features with the highest feature performance were identified to 
further investigate the (non) linear relationship of these sVF features with the respective EF performance. Here, 
rank correlations (Spearman) of sVF features and EF test scores were calculated. Due to the high number of 
extracted EF variables, only one highly significantly predicted EF test variable of each EF test is presented to 
exemplarily demonstrate the complex relationship of sVF features and EF performance. The selection of this 
representative EF variable was based on the test EF manuals and previous literature describing specific main 
variables of each EF test.

Results
Prediction of EF variables from verbal fluency data.  To investigate which EF targets were predictable 
from sVF features, we computed two independent prediction analyses. In the first analyses the full set of sVF 
features, including sum scores, errors, latencies and semantic relatedness was used (Fig. 1). The second analysis 
was performed with variables containing only information regarding the number of correctly produced items in 
each sVF task (Fig. 2). Both figures show the EF targets that were significantly predicted from sVF features at a 
significance level of p < 0.01. Detailed results of all prediction analyses are given in the supplementary material 
(Table S3).

In sum, 20 EF targets, pertaining to 8 different EF tests and tapping into all subdomains of EFs, could be 
predicted significantly from the full feature set. With respect to cognitive flexibility, TMT, SPM and WCST were 
predicted from sVF data. The highest correlation between true and predicted values was identified in processing 
times of part A (r = 0.41; p = 3.2e−10) and B (r = 0.33; p = 2.6e−7) of TMT. While these results are primarily related 
to overall processing speed, an explicit relationship between sVF performance and cognitive flexibility was 
found in the “difference between part B-A” of the TMT (r = 0.17 p = 0.007) as well as in the test results of SPM and 
WCST. Here, the number of correct items in the SPM (r = 0.20; p = 0.001) and different error types in the WCST 
revealed the complexity of cognitive requirements and planning ability in conducting the sVF task. With regards 
to tests assessing working memory capacity, two of three EF tests, namely NVLT (r = 0.24; p = 0.0002) and NBN 
(r = 0.16; p = 0.009) were predicted significantly. Beside EF targets referring to cognitive flexibility and working 
memory, the analysis also identified inhibition targets. Particularly, naming interference (r = 0.24; p = 0.0002) and 
processing time in STROOP (r = 0.23; p = 0.0003) were predicted.
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Across all subdomains of EFs, variables displaying general processing speed and reaction times performance 
were detected. The role of attention and general processing speed is also represented in test results referring to 
divided and spatial attention. Here, seven targets of attention tests were predicted significantly. In general, tests 
from all EF subdomains were predicted significantly and no dominance of one specific subdomain was apparent.

The focus of this study was the predictive power of an advanced VF feature set. To compare the predictive 
power of the advanced features with the commonly used VF information, i.e. the sum of correctly produced 
words, an additional prediction analysis was computed using solely sum scores. Here, the sum scores of each 
sVF tasks as well as a total sum score across all three tests were included. In this analysis only six EF targets 
were predicted significantly (Fig. 2). Prediction performance was lower than in the analysis with full feature set 
and particularly targets of processing speed and reactions times were detected. In contrast to the first analysis, 
vigilance was predicted with missed items in CLOCK (r = 0.16; p = 0.009).

0.0 0.1 0.2 0.3 0.4

TMT Process time part A

TMT Process time part B

WAF-G Reaction time (crossmodal)

STROOP Naming interference

NVLT Sum of difference between correct-false

STROOP Process time

WAF-G Reaction time (unimodal visual)

WCST Errors

WAF-R Reaction time (correct announced items)

WAF-G Number missed items (crossmodal)

WCST Non-perseveration errors

WAF-G Number of false alaram (crossmodal)

SPM Correct items

WAF-R Reaction time (short SOA)

SPM Process time

WAF-R Reaction time (long SOA)

NVLT Sum of false responses

TMT Difference part B-A

NBN Number of errors

NVLT Sum of correct responses

Correlation coefficient r

Legend

Inhibition

Attention / vigilance

Working memory

Cognitive flexibility

Figure 1.   Correlation coefficients of true and predicted executive function variables computed with full feature 
set. Executive function variables were predicted based on 43 verbal fluency features. Results shown in this table 
illustrate executive function variables which could be predicted at p < 0.01 from verbal fluency data; Colour 
groups indicate EF domains and colour gradients denote different EF tests within this EF domain; NBN N-back 
non-verbal; NVLT Non-verbal learning test; SOA Stimulus onset asynchrony; SPM Raven’s standard progressive 
matrices; STROOP Stroop test; TMT Trail making test; WCST Wisconsin Card Sorting Test; WAF-G Divided 
attention; WAF-R Spatial attention.

0.0 0.1 0.2 0.3 0.4

STROOP Process time

NVLT Sum of difference between correct-false

WAF-R Mean reaction time (unannounced items)

SPM Process time

WAF-G Number of false alaram (crossmodal)

CLOCK missed items

Correlation coefficient r

Legend

Inhibition

Attention / vigilance

Working memory

Cognitive flexibility

Figure 2.   Correlation coefficients of true and predicted executive function variables computed with classical 
feature set. Executive function variables were predicted based on the sum scores of all 3 semantic verbal fluency 
tests as well as the total sum score across these 3 tests, which led to a total number of four verbal fluency 
features. Results shown in this table illustrate executive function variables which could be predicted with p < 0.01 
from verbal fluency data; Colour groups indicate EF domains and gradients denote different EF tests within this 
EF domain; MACK Mackworth Clock Test; NVLT non-verbal learning test; SPM Raven’s Standard Progressive 
Matrices; STROOP Stroop Test; WAF-G Divided attention; WAF-R Spatial attention.
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Impact of sVF features on prediction analysis.  The impact of single sVF features on EF performance 
was quantified based on the feature importance scores of the prediction analysis. Due to the high number of 
significantly predicted EF targets, only one EF target for each of the significantly predicted EF tests is discussed 
in detail here. We focus on the main variables for the respective EF tests based on previous literature and the EF 
test manuals. For each of these, the five most important sVF features were extracted and correlations with the 
respective EF target were calculated (Tables 2, 3, 4, 5) to enable a comparison of present results with commonly 
used univariate analyses.

Across all EF domains, the most important sVF features for the prediction results included information about 
number of correctly produced words, error types, latencies and semantic distances. Out of these most predic-
tive sVF features, some showed a significant correlation with the EF target (p < 0.05), while others displayed a 
trend level significance (p < 0.1) or no significant correlation at all. In the following, we assessed the top five sVF 
features that are related to the different EF subdomains of cognitive flexibility, working memory, inhibition as 
well as to attention. Due to the high number of EF scores that were predicted significantly from sVF features, one 

Table 2.   Spearman correlations of five most important semantic verbal fluency (sVF) features with 
significantly predictable cognitive flexibility targets. 1–5 = Top five sVF features with regards to predictor 
performance based on feature importance; correlations with p < 0.1 are marked in bold; significant correlations 
(p < 0.05) are marked with *. SPM Raven’s Standard Progressive Matrices; TMT Trail-Making Test; WCST 
Wisconsin Card Sorting Test. t1 = VF test (animals); t2 = VF test (jobs); t3 = Switching VF test (sports/fruits); 
Cum cumulative.

SPM—correct items TMT—difference part B-A WCST—non-perseveration errors

Top 5 sVF features r p Top 5 sVF features r p Top 5 sVF features r p

1 Repetition error t1 − 0.05 0.44 1 Latencies 4th quarter t1 − 0.01 0.88 1 Repetition error t3 − 0.10 0.12

2 Latencies 2nd quarter t1 − 0.09 0.18 2 Repetition error t3 − 0.12 0.08 2 Latencies 1st quarter t1 0.17 0.01*

3 Category error t3 − 0.01 0.87 3 Latency difference t1 − 0.02 0.80 3 Category error t3 0.01 0.85

4 Correct words t1 − 0.12 0.08 4 Category error t3 − 0.07 0.27 4 Correct words t2 − 0.16 0.02*

5 Cum. mean t3 0.14 0.05* 5 Repetition error t1 − 0.01 0.80 5 Total sum score t1 + t2 + t3 − 0.16 0.02*

Table 3.   Spearman correlations of five most important semantic verbal fluency (sVF) features with 
significantly predictable working memory targets. 1–5 = Top five VF features with regards to predictor 
performance based on feature importance; correlations with p < 0.1 are marked in bold; significant correlations 
(p < 0.05) are marked with *. NBN N-back non-verbal; NVLT non-verbal learning test. t1 = VF test (animals); 
t2 = VF test (jobs); t3 = Switching VF test (sports/fruits); Cum cumulative; Sequ sequential; DIS semantic system 
DISCO.

NBN—errors NVLT—difference correct minus errors

Top 5 sVF features r p Top 5 sVF features r P

1 Repetition error t3 − 0.01 0.91 1 Latencies 4th quarter t1 − 0.12 0.08

2 Sequ. mean t1 − 0.19 0.00* 2 Category error t3 − 0.03 0.63

3 Category error t3 − 0.01 0.92 3 Latency difference t1 − 0.12 0.08

4 Repetition error t1 0.11 0.11 4 Correct words t1 0.07 0.28

5 Cum. mean DIS t3 − 0.12 0.07 5 Latency mean t2 0.03 0.69

Table 4.   Spearman correlations of five most important semantic verbal fluency (sVF) features with 
significantly predictable inhibition target. 1–5 = Top five VF features with regards to predictor performance 
based on feature importance; correlations with p < 0.1 are marked in bold; significant correlations (p < 0.05) are 
marked with *. t1 = VF test (animals); t2 = VF test (jobs); t3 = Switching VF test (sports/fruits); Cum cumulative; 
Sequ sequential; DIS semantic system DISCO.

STROOP—naming interference

Top 5 sVF features r p

1 Cum. mean t2 − 0.18 0.01*

2 Latency difference t1 0.03 0.62

3 Latencies 4th quarter t1 0.05 0.48

4 Sequ. mean DIS cat1 t3 − 0.15 0.03*

5 Total sum score t1 + t2 + t3 − 0.22 0.00*
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EF variable of each significantly predicted test is presented here. A complete overview of the correlation matrix 
of all sVF features and significantly predicted EF scores is given in the supplementary material (Tables S4–S6).

With regards to cognitive flexibility (Table 2) 7/15 sVF features were related to errors participants produced 
within the sVF task. Repetition errors in simple and switching sVF tasks as well as category errors in the switch-
ing task were found to be important sVF features for predicting EF targets. Particularly, repetition and category 
errors were determined as highly relevant in predicting TMT performance. However, no significant (linear) 
correlation between errors and cognitive flexibility performance was found. In contrast, a linear relationship of 
sVF information and EF performance was shown for the number of correctly produced words. Here, significant 
correlations of correctly produced words and cognitive flexibility targets were primarily found in the WCST. 
Similar but not significant results were also found in the SPM. In all three significantly predicted EF tests (SPM, 
TMT, WCST) latencies within the sVF task1 (animals) were identified as important sVF features but did not reveal 
correlations with EF targets except for latency patterns assessed in i1. Here, longer speech breaks were shown to 
positively correlate with errors in WCST. With regards to semantic relatedness the cumulative mean within the 
sVF switching task (t3), calculated with the hierarchical structured approach of GermaNet, was identified as a 
meaningful feature predicting SPM performance. Specifically, participants naming closely related words across 
both switching categories (sports and fruits) achieved better SPM targets.

Within the EF domain of working memory, the NBN and NVLT were identified as highly predictable EF tests 
(Table 3). Here, the sum of correctly produced words was selected as an important sVF feature less often than for 
cognitive flexibility tests and no significant correlation with EF target was found. Non-linear relationships of sVF 
features and working memory performance was additionally found for sVF features errors which were mainly 
important for predicting NBN performance. Among the five most important sVF features predicting NBN per-
formance, the sequential as well as cumulative mean of the semantic relatedness were found to be highly relevant. 
Similar to results in cognitive flexibility tests (Table 1), a smaller search space (r = − 0.12 p = 0.07) and closely 
related words (r = − 0.19 p = 0.005) led to better results in NBN. While semantic relatedness was particularly 
important for predicting errors in NBN, latencies were relevant for NVLT performance. Here, results indicated 
a relationship between smaller speech breaks in end of the sVF task and higher NVLT target (r = − 0.12 p = 0.08).

With respect to inhibition, naming interference in the Stroop test was predicted significantly. While error types 
were not selected as most important sVF features, the total sum score across all three sVF tests was determined 
as meaningful and revealed a significant correlation with Stroop performance (r = − 0.22 p < 0.001) (Table 4). 
Important features for predicting naming interference performance were semantic relatedness and latencies. 
In particular, the searching space in t2 represented by the cumulative mean was identified as highly important. 
These results indicate a better inhibition performance if participants searched for less distanced words (r = − 0.18 
p = 0.01). Similar results were also found in sVF features of sequential relatedness. Searching for closely related 
words in the first category within the switching sVF task (cat1 t3) was related to better inhibitory performance 
(r = − 0.15 p = 0.03). Beside sematic relatedness and total sVF sum score, the analysis also points toward the 
relevance of latency patterns within the first sVF task (animals) for predicting inhibitory processes.

Finally, we investigated sVF features in the prediction of attentional performance (Table 5). Here, the results 
demonstrate a predictive importance of repetition errors in simple as well as in switching sVF tasks. The results 
revealed no significant correlation between number of errors and attention performance. Latencies within the 
first quarter of the switching sVF task (t3) were selected as relevant for attention performance, indicating that a 
higher processing speed in the beginning of the sVF task resulted in faster reaction times in the divided attention 
test. Similar to previously reported results in other EF subdomains, semantic relatedness features in simple sVF 
task (animals) were selected as meaningful variables for attention performance.

To sum up, across all subdomains of EFs, a variety of different types of sVF features, including sum scores, 
error types, sematic relatedness and latencies showed high relevance for the prediction of EF performance. Out 
of these, about one third showed significant or trend level correlation with EF targets, while the remaining VF 
features that were identified as important for prediction accuracy, did not show any linear relationship with the 
respective EF target.

Table 5.   Spearman correlations of five most important semantic verbal fluency (sVF) features with 
significantly predictable attention targets. 1–5 = Top five VF features with regards to predictor performance 
based on feature importance; correlations with p < 0.1 are marked in bold; significant correlations (p < 0.05) are 
marked with *. WAF-G divided attention test; WAF-R spatial attention test. t1 = VF test (animals); t2 = VF test 
(jobs); t3 = Switching VF test (sports/fruits); Cum cumulative; Sequ sequential; DIS semantic system DISCO.

WAF-G reaction time crossmodal WAF-R—reaction time correctly announced

Top 5 sVF features r P Top 5 sVF features r p

1 Repetition error t3 − 0.09 0.17 1 Repetition error t2 − 0.01 0.93

2 Repetition error t2 − 0.03 0.70 2 Repetition error t1 − 0.09 0.17

3 Latencies 1st quarter t3 0.13 0.06 3 Sequ. mean DIS t1 0.04 0.61

4 Repetition error t1 − 0.05 0.45 4 Cum. mean DIS t1 0.07 0.29

5 Cum. Mean t1 − 0.03 0.59 5 Repetition error t3 0.01 0.88
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Discussion
Main findings.  This study aimed to investigate whether EF performance can be predicted from sVF tasks 
using Machine Learning methods. In a first step, we applied a RF approach to determine which EF tests could 
successfully be predicted from a wide range of VF information. Results of this machine learning analysis identi-
fied EF tests tapping into all subdomains of EFs. In total, 20 of 44 EF scores were predicted significantly when 
using the full set of sVF features which included errors, latencies and semantic distances.

Moreover, prediction results of the full sVF features set was compared to a classical feature set including 
only sum scores of sVF tasks, as commonly used in clinical settings. The comparison of these two approaches 
revealed a larger number of significantly predicted EF scores as well as higher prediction accuracy of the advanced 
feature set. Particularly for cognitive flexibility performance, the comprehensive feature set achieved a higher 
prediction accuracy as compared to the commonly used sum score evaluation. Thus, the present results clearly 
demonstrate the advantage of using more comprehensive sVF features over the sole use of sum scores, which to 
date still tend to be the most common measure used to asses sVF tasks. In a second step, we further investigated 
the concrete involvement of different types of sVF features to gain insights into the impact of specific VF aspects 
on EF performance. Results showed that all types of sVF features, i.e. sum scores, errors, latencies and semantic 
relatedness contributed to the prediction of EF. With regards to the different EF subdomains no dominance of 
specific VF types was detected. Moreover, the correlation analyses revealed that good sVF predictors do not 
necessarily correlate with the respective EF score.

The following section starts with a discussion of the influence of different sVF features on prediction results. 
Here, predictable EF tests within each subdomain are presented and the contributions of sVF features are inter-
preted. Additionally, the role of general processing speed is addressed. Secondly, advantages of an elaborated VF 
feature set are delineated. In the end, limitations of this study are considered.

Sum scores.  Summarizing scores of correctly produced items is the most commonly used way of evaluating 
VF tasks in the clinical and scientific context to date. The present study included separate sum scores for each 
sVF test as well as a total one across all sVF tasks. Results revealed the importance of sum score features for the 
prediction of cognitive flexibility, working memory and inhibition performance. In contrast, sum scores were 
not identified as important for predicting attention scores. Particularly sum scores resulting from t1 (animals) as 
well as total sum scores revealed high feature importance. Furthermore, a positive linear relationship of relevant 
sVF sum scores and EF performance in the domains of inhibition and cognitive flexibility was found.

The findings from the present study can be directly linked to previous studies. In particular, Paula et al.87 
reported a positive correlation between cognitive flexibility performance, assessed with the TMT, and the sum of 
correct produced words in the switching task. With regards to working memory, another study found an associa-
tion between the sum of correct produced items and working memory performance43. With respect to inhibition, 
our findings are also in line with multiple studies that demonstrated the positive linear relationship of inhibition 
performance and the total sum of words, assessed within the VF task, both in older22 and young88 adults.

Overall, based on previous literature and the results of the current study, sum scores were shown to contribute 
to the prediction results. In accordance with previous findings, this contribution appears to be based on a positive 
linear relationship of sum scores with EF performance.

Error types.  When predicting EF test scores from sVF features, repetition and category errors were identi-
fied to mainly contribute to the prediction of cognitive flexibility, working memory and attention test result. 
Conversely, errors were not identified as important features for the prediction of inhibition scores. While both 
repetition and category errors were shown to be equally important for the prediction of cognitive flexibility 
and working memory, only repetition errors contributed to predicting attention performance. Importantly, in 
contrast to sum scores, most error features did not show a linear relationship with the respective EF test per-
formance. The prediction results of TMT were the only ones to reveal a correlation trend, indicating that fewer 
repetition errors in sVF tasks are associated with better cognitive flexibility performance.

These findings partially contradict previous findings investigating the linear relationship between errors in 
the VF task and EF performance. Particularly, previous studies suggested that executive inhibitory dysfunc-
tion and reduced working memory performance lead to a higher number of perseveration errors in healthy 
participants20,89. Similar findings have also been reported in patients with brain damages90 and schizophrenia38. 
In contrast, some studies did not find an increase in the number of perseveration errors in Parkinson´s patients 
compared to healthy controls91.

Although in the present study repetition and category errors were shown to be important for the success-
ful prediction of EF performance in all EF domains except for inhibitory processes, results revealed that a low 
number of produced errors does not necessarily result in better EF performance. Due to the importance of errors 
in prediction results and the non-linear relationship with EF performance, we assume that some participants 
adopt strategies where a higher number of errors is accepted in order to achieve a better score in the sVF task. 
Thus, successful EF performance does not necessarily go along with fewer errors.

Latencies.  With regards to latency patterns our results revealed the importance of speech breaks for the 
prediction of all domains of EF as well as for attention scores. Latency patterns contributed differently to the 
prediction of different EF scores. Latency patterns during the first interval of the sVF task (i1) were revealed as 
a meaningful feature for inhibitory processes, cognitive flexibility and attention performance. However, addi-
tional latency patterns, such as the mean of all latencies within each task and the progress of latencies (namely 
latency differences) also contributed to the prediction results. Interestingly, our results indicate an ambiguous 
relationship between latency patterns and EF test results. On the one hand, correlation analyses revealed some 
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significant correlations between latency patterns and EF scores with, for example, longer speech breaks in i1 were 
related to a higher amount of errors in the WCST assessing cognitive flexibility performance. On the other hand, 
most of the latency features did not show a linear relationship with EF performance.

To our knowledge, the relationship between speech breaks and EF performance in the context of VF has 
rarely been reported in previous literature, with existing studies tending to rather focus on unfilled pauses in 
free speech56. However, previous findings support our results with respect to the importance of speech breaks 
within the first interval of the VF task in that previous studies found a relationship between longer latencies in the 
beginning of the VF task and cognitive flexibility performance39. Moreover, other studies suggest that a decrease 
of speech latencies over the course of the VF task is related to the cluster patterns of the participants. While 
participants are assumed to produce clusters with high-frequent words in the beginning of the task, less frequent 
words are produced during the progression of the task leading to more switches and increased searching times92.

In general, previous studies support the positive relationship between the duration of speech breaks and 
higher cognitive demands56. However, our results revealed mostly non-linear relationships between latencies 
and significantly predicted EF scores. This might suggest that shorter speech breaks per se do not go along with 
better EF performance. Rather, we assume that the heterogeneity of searching strategies, including processes 
such as clustering and switching, lead to ambiguous latency patterns.

Semantic relatedness.  Investigating the role of semantic relatedness between produced words within the 
sVF task, two different semantic analysis systems were applied. On the one hand, a hierarchical approach was 
used (GermaNet)52. On the other hand, an approach based on word embeddings was applied (DISCO)51. The 
main goal of including both approaches was to assess as much diverse semantic information as possible. Our 
results revealed that semantic relatedness measures from both semantic systems contribute essentially to the 
prediction of all EF domains as well as to attention performance. Although not all semantic features revealed a 
linear relationship with EF performance, results indicate that searching for closely related words might be related 
to stronger EF test results.

These findings are partially in line with previous studies which apply earlier approaches of cluster and switch-
ing quantification to investigate the importance of switches in the sVF task87. Authors have found a positive 
relationship between fewer switches and better cognitive flexibility performance in healthy participants87. In 
contrast, other studies reported a decreased number of switches in depressive patients with reduced cognitive 
flexibility93. Although the present study did not differentiate between the two types of switches42, the semantic 
systems applied in this study51,52 provided additional semantic distances which are similarly interpretable. In 
detail, these semantic measurements also quantify semantic distances of sequential and cumulative word pairs. 
Thus, a higher semantic mean in the present study can be equated to a higher cluster size and less hard switches. 
However, the present study did not aim to investigate such a fine-grained semantic approach as Troyer´s41 
approach but rather strived to investigate the general importance of semantic distances within the sVF task.

In general, we assume that the production of semantically distanced words puts higher demands on cognitive 
processes. However, for the sVF task, participants are asked to simply produce as many words as possible, with 
no demands on the number of different subcategories these words come from. Thus, producing closely related 
words and building high cluster sizes might represent the most efficient strategy of successful EF performers.

Superiority of advanced sVF feature set.  While the full feature set of sum scores, errors, latencies and 
semantic relatedness was applied for the main analysis, we also predicted EF scores using sum score features 
only. Using the sophisticated feature set, test variables from all EF domains as well as attention performance and 
8/14 EF tests were successfully predicted. While many of the predictable EF scores contained general informa-
tion of processing speed and reaction times, results also comprised EF scores which are considered as character-
istic variables for specific EF tests. For example, TMT is represented by the difference between part A-B94, Stroop 
by naming interference71, SPM by correct items62 and WCST by non-perseveration errors58, all of which were 
found to be predictable EF scores.

In contrast, analysis with a classical sVF feature solely containing information of the sum scores, predicted 
only 6/14 EF tests most of which were related to general processing speed rather than to specific EF functions. 
Only one EF score of NVLT contained characteristic information of working memory performance. EF scores 
representing cognitive flexibility and inhibitory performance did not include information which are directly 
linked to EF performance but rather related to general speed.

To our knowledge, so far, no other study has attempted combining different types of sVF measurements to 
predict EF scores. However, previous research has demonstrated the advantages of advanced approaches evaluat-
ing additional information over the sole use of the total number of correctly produced words. For example, it was 
shown that the switching sVF task, which was also used in the present study (t3), contained more information 
of cognitive flexibility than simple VF tasks87. Our findings are also in line with another study investigating the 
digitalized evaluation of semantic relatedness with WordNet50. In particular, semantic relatedness was found 
to be highly associated with EFs and serve as an indicator for mild cognitive impairments which are difficult to 
detect with sum scores95.

The comparison of prediction analysis with and without an extended set of sVF features mainly indicated 
that sum scores alone capture mostly working memory performance and attention scores. On the other hand, an 
advanced sVF feature set including sum scores, errors, latencies and sematic relatedness allows for the prediction 
of cognitive flexibility, working memory and inhibition performances as well as attention scores.

Investigating the relationship between the most important sVF features and EF performance in more detail, 
multiple non-linear relationships were detected. These findings highlight the advantages of machine learning 
approaches which are able to detect complex, non-linear relationships in addition to straightforward linear ones. 
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Also, these approaches can take into account multivariate interactions between different VF features to reveal 
patterns which could not have been identified based on each single feature alone.

In general, our findings indicate that the use of a comprehensive set of VF features might have the potential 
to replace time-consuming and artificial EF tests. Due to the use of abstract symbols like numbers and letters, 
commonly used neuropsychological tests are criticized for their lacking ecological validity11. In contrast, produc-
ing words which are related to a specific category better represents daily needs and requirements of participants. 
Moreover, the lack of ecological validity might have influenced the correlations of the abstract EF test scores 
and the more natural sVF features. However, it remains open whether comprehensive sVF features may be even 
more helpful in clinical practice than commonly used EF test batteries.

Role of processing speed.  In both analyses, variables which are not directly linked to EF performance but 
rather represent overall processing speed or reaction times, were predicted significantly. Similar findings were 
reported in our previous study predicting VF sum scores from EF tests variables96. The relationship of process-
ing speed and sVF performance is also reported in other studies83,97. These authors suggest that processing time 
reflects general cognitive abilities such as intelligence to some extent98 but may also be related to age99 or per-
sonality traits such as extraversion100. Additionally, the presence of a time indication within some EF tests might 
facilitate processing speed similarly as in sVF tasks.

Limitations.  Our results yielded insights into the involvement of EFs in the sVF task and highlighted the 
informative value of the sVF task to predict EF performance using a comprehensive feature set. Moreover, our 
results revealed complex and mostly non-linear relationships of VF features and EF performance. Hence, a 
detailed examination of individual differences in searching strategies might improve our understanding of which 
sVF patterns are related to higher EF performance in certain domains. As with all analyses of individual differ-
ences such research is dependent on large data sets comprising detailed information on EF and VF performance.

An additional consideration relates to the generalizability of our results. Ideally, our findings should be 
validated in a fully independent data set. To date, such a data set of sufficient size is not yet available. Hence, 
we applied a cross-validation approach within our sample. Here, the model was trained on some parts of the 
data while other parts of the data were held back. The model was then validated in the previously held back 
participants. This within-dataset validation represents the best alternative when a fully independently acquired 
dataset is not yet available.

Summary and outlook.  Our study revealed insights into the advantages of an elaborated analysis of sVF 
tasks which successfully predicts EF performance. In comparison to the commonly used approach of evaluat-
ing sum scores of correctly produced words, we detected a lucid advantage of an extended feature analysis. In 
particular with regards to cognitive flexibility and inhibition our study demonstrated that an evaluation of sVF 
sum scores does not capture actual EF performance but rather assesses overall processing speed. Thus, we sug-
gest the utilization of a comprehensive analysis of VF performance including features of error types, latencies 
and semantic distances. The present study applied primarily automated and digitalized methods ensuring a 
time-efficient and objective evaluation of VF performance. Further studies ought to develop a fully automated 
software tool integrating and further developing our feature set. Here, it would be highly interesting to also 
include features from the lexical VF task. A computerized toolbox allowing for an extensive assessment of VF 
could serve as a screening tool for EFs in a clinical diagnostic process as well as in a research context. Such a tool 
could include an audio system that records the speech of the patient and converts it into text. Subsequently, an 
automated software could be used to automatically determine a comprehensive set of VF features including sum 
scores, errors, latencies and semantic distances from the transcribed data. This can in turn result in a digitalized 
and quantified evaluation of the patient´s EFs compared to healthy controls based on VF performance, which 
can be then used by the clinician as part of the diagnostic process. Consequently, this toolbox could allow for 
higher ecological validity while also saving time in clinical routine.

However, we do not suggest that VF assessments will be able to fully substitute an initial extensive assessment 
of EFs with commonly used EF test batteries. We rather propose an extended and fully digitalized VF analysis 
as part of progress diagnostics in the form of a screening to assess EF performance in e.g. Parkinson´s disease or 
ADHD. Additionally, this screening-tool could be used in patients with predispositions of schizophrenia before 
manifestation of clinical symptoms. Here, an advanced sVF analysis could provide insights into subtle changes 
of EF performance. In the future, this work might contribute to an automated digitalized speech analysis sup-
porting clinicians in diagnostic processes.

Altogether, the present study demonstrated the predictive superiority of an extended VF feature evaluation. 
Additionally, the results provided a first step towards an automated analysis of VF serving as a predictor for EFs.
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