Home > Publications database > Autofluorescence enhancement for label-free imaging of myelinated fibers in mammalian brains > print |
001 | 892370 | ||
005 | 20210623131757.0 | ||
024 | 7 | _ | |a 10.1038/s41598-021-86092-7 |2 doi |
024 | 7 | _ | |a 2128/27733 |2 Handle |
024 | 7 | _ | |a altmetric:103900484 |2 altmetric |
024 | 7 | _ | |a 33850168 |2 pmid |
024 | 7 | _ | |a WOS:000640611400023 |2 WOS |
037 | _ | _ | |a FZJ-2021-02031 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Costantini, Irene |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Autofluorescence enhancement for label-free imaging of myelinated fibers in mammalian brains |
260 | _ | _ | |a [London] |c 2021 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1620220403_30363 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Analyzing the structure of neuronal fibers with single axon resolution in large volumes is a challenge in connectomics. Different technologies try to address this goal; however, they are limited either by the ineffective labeling of the fibers or in the achievable resolution. The possibility of discriminating between different adjacent myelinated axons gives the opportunity of providing more information about the fiber composition and architecture within a specific area. Here, we propose MAGIC (Myelin Autofluorescence imaging by Glycerol Induced Contrast enhancement), a tissue preparation method to perform label-free fluorescence imaging of myelinated fibers that is user friendly and easy to handle. We exploit the high axial and radial resolution of two-photon fluorescence microscopy (TPFM) optical sectioning to decipher the mixture of various fiber orientations within the sample of interest. We demonstrate its broad applicability by performing mesoscopic reconstruction at a sub-micron resolution of mouse, rat, monkey, and human brain samples and by quantifying the different fiber organization in control and Reeler mouse's hippocampal sections. Our study provides a novel method for 3D label-free imaging of nerve fibers in fixed samples at high resolution, below micrometer level, that overcomes the limitation related to the myelinated axons exogenous labeling, improving the possibility of analyzing brain connectivity. |
536 | _ | _ | |a 525 - Decoding Brain Organization and Dysfunction (POF4-525) |0 G:(DE-HGF)POF4-525 |c POF4-525 |x 0 |f POF IV |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |x 1 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |x 2 |f H2020-SGA-FETFLAG-HBP-2017 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Baria, Enrico |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Sorelli, Michele |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Matuschke, Felix |0 P:(DE-Juel1)169807 |b 3 |u fzj |
700 | 1 | _ | |a Giardini, Francesco |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Menzel, Miriam |0 P:(DE-Juel1)161196 |b 5 |u fzj |
700 | 1 | _ | |a Mazzamuto, Giacomo |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Silvestri, Ludovico |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Cicchi, Riccardo |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Amunts, Katrin |0 P:(DE-Juel1)131631 |b 9 |u fzj |
700 | 1 | _ | |a Axer, Markus |0 P:(DE-Juel1)131632 |b 10 |u fzj |
700 | 1 | _ | |a Pavone, Francesco Saverio |0 P:(DE-HGF)0 |b 11 |
773 | _ | _ | |a 10.1038/s41598-021-86092-7 |g Vol. 11, no. 1, p. 8038 |0 PERI:(DE-600)2615211-3 |n 1 |p 8038 |t Scientific reports |v 11 |y 2021 |x 2045-2322 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/892370/files/s41598-021-86092-7-1.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:892370 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)169807 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)161196 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)131631 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)131632 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-571 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Connectivity and Activity |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-02-03 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2019 |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-03 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-03 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-03 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|