000892373 001__ 892373
000892373 005__ 20250813093043.0
000892373 0247_ $$2arXiv$$aarXiv:2104.03393
000892373 0247_ $$2Handle$$a2128/27736
000892373 0247_ $$2altmetric$$aaltmetric:103541910
000892373 037__ $$aFZJ-2021-02034
000892373 082__ $$a610
000892373 1001_ $$0P:(DE-Juel1)177675$$aUpschulte, Eric$$b0$$eCorresponding author$$ufzj
000892373 245__ $$aContour Proposal Networks for Biomedical Instance Segmentation
000892373 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000892373 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1700723864_27668
000892373 3367_ $$2ORCID$$aWORKING_PAPER
000892373 3367_ $$028$$2EndNote$$aElectronic Article
000892373 3367_ $$2DRIVER$$apreprint
000892373 3367_ $$2BibTeX$$aARTICLE
000892373 3367_ $$2DataCite$$aOutput Types/Working Paper
000892373 520__ $$aWe present a conceptually simple framework for object instance segmentation called Contour Proposal Network (CPN), which detects possibly overlapping objects in an image while simultaneously fitting closed object contours using an interpretable, fixed-sized representation based on Fourier Descriptors. The CPN can incorporate state of the art object detection architectures as backbone networks into a single-stage instance segmentation model that can be trained end-to-end. We construct CPN models with different backbone networks, and apply them to instance segmentation of cells in datasets from different modalities. In our experiments, we show CPNs that outperform U-Nets and Mask R-CNNs in instance segmentation accuracy, and present variants with execution times suitable for real-time applications. The trained models generalize well across different domains of cell types. Since the main assumption of the framework are closed object contours, it is applicable to a wide range of detection problems also outside the biomedical domain. An implementation of the model architecture in PyTorch is freely available.
000892373 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000892373 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x1
000892373 536__ $$0G:(DE-HGF)InterLabs-0015$$aHIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)$$cInterLabs-0015$$x2
000892373 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
000892373 536__ $$0G:(DE-Juel-1)E.40401.62$$aHelmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)$$cE.40401.62$$x4
000892373 588__ $$aDataset connected to arXivarXiv
000892373 7001_ $$0P:(DE-HGF)0$$aHarmeling, Stefan$$b1
000892373 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b2$$ufzj
000892373 7001_ $$0P:(DE-Juel1)165746$$aDickscheid, Timo$$b3$$ufzj
000892373 773__ $$0PERI:(DE-600)1497450-2$$gp. 102371 -$$p102371 -$$tMedical image analysis$$x1361-8415$$y2022
000892373 8564_ $$uhttps://juser.fz-juelich.de/record/892373/files/Invoice_OAD0000186910.pdf
000892373 8564_ $$uhttps://juser.fz-juelich.de/record/892373/files/Upschulte_arXiv_2021.pdf$$yOpenAccess
000892373 8767_ $$8OAD0000186910$$92022-02-08$$d2022-02-11$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200177340
000892373 909CO $$ooai:juser.fz-juelich.de:892373$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000892373 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892373 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000892373 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000892373 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED IMAGE ANAL : 2021$$d2022-11-18
000892373 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000892373 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000892373 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000892373 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000892373 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000892373 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-18
000892373 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000892373 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bMED IMAGE ANAL : 2021$$d2022-11-18
000892373 9141_ $$y2022
000892373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177675$$aForschungszentrum Jülich$$b0$$kFZJ
000892373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b2$$kFZJ
000892373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165746$$aForschungszentrum Jülich$$b3$$kFZJ
000892373 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000892373 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000892373 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000892373 980__ $$apreprint
000892373 980__ $$aVDB
000892373 980__ $$aI:(DE-Juel1)INM-1-20090406
000892373 980__ $$aAPC
000892373 980__ $$aUNRESTRICTED
000892373 9801_ $$aAPC
000892373 9801_ $$aFullTexts