001     892373
005     20250813093043.0
024 7 _ |2 arXiv
|a arXiv:2104.03393
024 7 _ |2 Handle
|a 2128/27736
024 7 _ |2 altmetric
|a altmetric:103541910
037 _ _ |a FZJ-2021-02034
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)177675
|a Upschulte, Eric
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Contour Proposal Networks for Biomedical Instance Segmentation
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2022
336 7 _ |0 PUB:(DE-HGF)25
|2 PUB:(DE-HGF)
|a Preprint
|b preprint
|m preprint
|s 1700723864_27668
336 7 _ |2 ORCID
|a WORKING_PAPER
336 7 _ |0 28
|2 EndNote
|a Electronic Article
336 7 _ |2 DRIVER
|a preprint
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 DataCite
|a Output Types/Working Paper
520 _ _ |a We present a conceptually simple framework for object instance segmentation called Contour Proposal Network (CPN), which detects possibly overlapping objects in an image while simultaneously fitting closed object contours using an interpretable, fixed-sized representation based on Fourier Descriptors. The CPN can incorporate state of the art object detection architectures as backbone networks into a single-stage instance segmentation model that can be trained end-to-end. We construct CPN models with different backbone networks, and apply them to instance segmentation of cells in datasets from different modalities. In our experiments, we show CPNs that outperform U-Nets and Mask R-CNNs in instance segmentation accuracy, and present variants with execution times suitable for real-time applications. The trained models generalize well across different domains of cell types. Since the main assumption of the framework are closed object contours, it is applicable to a wide range of detection problems also outside the biomedical domain. An implementation of the model architecture in PyTorch is freely available.
536 _ _ |0 G:(DE-HGF)POF4-525
|a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|c POF4-525
|f POF IV
|x 0
536 _ _ |0 G:(DE-Juel1)JL SMHB-2021-2027
|a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|c JL SMHB-2021-2027
|x 1
536 _ _ |0 G:(DE-HGF)InterLabs-0015
|a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|c InterLabs-0015
|x 2
536 _ _ |0 G:(EU-Grant)945539
|a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 3
536 _ _ |0 G:(DE-Juel-1)E.40401.62
|a Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62)
|c E.40401.62
|x 4
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |0 P:(DE-HGF)0
|a Harmeling, Stefan
|b 1
700 1 _ |0 P:(DE-Juel1)131631
|a Amunts, Katrin
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)165746
|a Dickscheid, Timo
|b 3
|u fzj
773 _ _ |0 PERI:(DE-600)1497450-2
|g p. 102371 -
|p 102371 -
|t Medical image analysis
|x 1361-8415
|y 2022
856 4 _ |u https://juser.fz-juelich.de/record/892373/files/Invoice_OAD0000186910.pdf
856 4 _ |u https://juser.fz-juelich.de/record/892373/files/Upschulte_arXiv_2021.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892373
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177675
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131631
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165746
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-525
|1 G:(DE-HGF)POF4-520
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|v Decoding Brain Organization and Dysfunction
|x 0
913 0 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
914 1 _ |y 2022
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b MED IMAGE ANAL : 2021
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
|b MED IMAGE ANAL : 2021
|d 2022-11-18
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21