Hauptseite > Publikationsdatenbank > Contour Proposal Networks for Biomedical Instance Segmentation > print |
001 | 892373 | ||
005 | 20250813093043.0 | ||
024 | 7 | _ | |2 arXiv |a arXiv:2104.03393 |
024 | 7 | _ | |2 Handle |a 2128/27736 |
024 | 7 | _ | |2 altmetric |a altmetric:103541910 |
037 | _ | _ | |a FZJ-2021-02034 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |0 P:(DE-Juel1)177675 |a Upschulte, Eric |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Contour Proposal Networks for Biomedical Instance Segmentation |
260 | _ | _ | |a Amsterdam [u.a.] |b Elsevier Science |c 2022 |
336 | 7 | _ | |0 PUB:(DE-HGF)25 |2 PUB:(DE-HGF) |a Preprint |b preprint |m preprint |s 1700723864_27668 |
336 | 7 | _ | |2 ORCID |a WORKING_PAPER |
336 | 7 | _ | |0 28 |2 EndNote |a Electronic Article |
336 | 7 | _ | |2 DRIVER |a preprint |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 DataCite |a Output Types/Working Paper |
520 | _ | _ | |a We present a conceptually simple framework for object instance segmentation called Contour Proposal Network (CPN), which detects possibly overlapping objects in an image while simultaneously fitting closed object contours using an interpretable, fixed-sized representation based on Fourier Descriptors. The CPN can incorporate state of the art object detection architectures as backbone networks into a single-stage instance segmentation model that can be trained end-to-end. We construct CPN models with different backbone networks, and apply them to instance segmentation of cells in datasets from different modalities. In our experiments, we show CPNs that outperform U-Nets and Mask R-CNNs in instance segmentation accuracy, and present variants with execution times suitable for real-time applications. The trained models generalize well across different domains of cell types. Since the main assumption of the framework are closed object contours, it is applicable to a wide range of detection problems also outside the biomedical domain. An implementation of the model architecture in PyTorch is freely available. |
536 | _ | _ | |0 G:(DE-HGF)POF4-525 |a 525 - Decoding Brain Organization and Dysfunction (POF4-525) |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)JL SMHB-2021-2027 |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) |c JL SMHB-2021-2027 |x 1 |
536 | _ | _ | |0 G:(DE-HGF)InterLabs-0015 |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015) |c InterLabs-0015 |x 2 |
536 | _ | _ | |0 G:(EU-Grant)945539 |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 3 |
536 | _ | _ | |0 G:(DE-Juel-1)E.40401.62 |a Helmholtz AI - Helmholtz Artificial Intelligence Coordination Unit – Local Unit FZJ (E.40401.62) |c E.40401.62 |x 4 |
588 | _ | _ | |a Dataset connected to arXivarXiv |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Harmeling, Stefan |b 1 |
700 | 1 | _ | |0 P:(DE-Juel1)131631 |a Amunts, Katrin |b 2 |u fzj |
700 | 1 | _ | |0 P:(DE-Juel1)165746 |a Dickscheid, Timo |b 3 |u fzj |
773 | _ | _ | |0 PERI:(DE-600)1497450-2 |g p. 102371 - |p 102371 - |t Medical image analysis |x 1361-8415 |y 2022 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/892373/files/Invoice_OAD0000186910.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/892373/files/Upschulte_arXiv_2021.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:892373 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)177675 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)131631 |a Forschungszentrum Jülich |b 2 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)165746 |a Forschungszentrum Jülich |b 3 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-525 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Decoding Brain Organization and Dysfunction |x 0 |
913 | 0 | _ | |0 G:(DE-HGF)POF3-571 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |3 G:(DE-HGF)POF3 |4 G:(DE-HGF)POF |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Connectivity and Activity |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b MED IMAGE ANAL : 2021 |d 2022-11-18 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2022-11-18 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2022-11-18 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2022-11-18 |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2022-11-18 |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2022-11-18 |
915 | _ | _ | |0 StatID:(DE-HGF)1160 |2 StatID |a DBCoverage |b Current Contents - Engineering, Computing and Technology |d 2022-11-18 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2022-11-18 |
915 | _ | _ | |0 StatID:(DE-HGF)9910 |2 StatID |a IF >= 10 |b MED IMAGE ANAL : 2021 |d 2022-11-18 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-1-20090406 |k INM-1 |l Strukturelle und funktionelle Organisation des Gehirns |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-1-20090406 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|