000892378 001__ 892378 000892378 005__ 20230418142801.0 000892378 0247_ $$2doi$$a10.1002/jpln.202000496 000892378 0247_ $$2ISSN$$a0044-3263 000892378 0247_ $$2ISSN$$a0366-2136 000892378 0247_ $$2ISSN$$a0372-851X 000892378 0247_ $$2ISSN$$a0372-9702 000892378 0247_ $$2ISSN$$a0932-6987 000892378 0247_ $$2ISSN$$a0932-6995 000892378 0247_ $$2ISSN$$a1436-8730 000892378 0247_ $$2ISSN$$a1522-2624 000892378 0247_ $$2Handle$$a2128/28162 000892378 0247_ $$2altmetric$$aaltmetric:105749626 000892378 0247_ $$2WOS$$aWOS:000646609700001 000892378 037__ $$aFZJ-2021-02039 000892378 082__ $$a640 000892378 1001_ $$0P:(DE-Juel1)185044$$aHaupenthal, Adrian$$b0$$eCorresponding author 000892378 245__ $$aPlants control soil gas exchanges possibly via mucilage 000892378 260__ $$aWeinheim$$bWiley-VCH$$c2021 000892378 3367_ $$2DRIVER$$aarticle 000892378 3367_ $$2DataCite$$aOutput Types/Journal article 000892378 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639039944_6863 000892378 3367_ $$2BibTeX$$aARTICLE 000892378 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000892378 3367_ $$00$$2EndNote$$aJournal Article 000892378 520__ $$aBackground: Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g., mucilage) affects soil pore tortuosity and gas diffusion properties when drying.Aims: The aim of this viewpoint study is to extend the understanding of gas exchange processes in the rhizosphere by (a) relating it to the patterns formed by drying mucilage within pore space and (b) to give a concept of the effect of drying mucilage on soil gas diffusivity using the combination of experimental evidence and simulations.Methods: To describe the effect of mucilage on soil gas exchanges, we performed gas diffusion experiments on dry soil–mucilage samples and took images of glass beads mixed with mucilage to visualize the formation of mucilage after drying, using Environmental Scanning Electron Microscopy. Finally, we set up simulations to characterize the geometric distribution of mucilage within soil during the drying process.Results: Experiments of gas diffusion show that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicates that during drying mucilage forms filaments and interconnected structures throughout the pore space reducing gas phase connectivity. The evolution of these geometric structures is explained via pore scale modelling based on identifying the elastic strength of rhizodeposition during soil drying.Conclusion: Our results suggest that releasing mucilage may be a plant adaption strategy to actively alter gas diffusion in soil. 000892378 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0 000892378 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1 000892378 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000892378 7001_ $$0P:(DE-HGF)0$$aBrax, Mathilde$$b1 000892378 7001_ $$0P:(DE-HGF)0$$aBentz, Jonas$$b2 000892378 7001_ $$0P:(DE-HGF)0$$aJungkunst, Hermann F.$$b3 000892378 7001_ $$0P:(DE-HGF)0$$aSchützenmeister, Klaus$$b4 000892378 7001_ $$0P:(DE-Juel1)165576$$aKröner, Eva$$b5$$ufzj 000892378 773__ $$0PERI:(DE-600)1481142-X$$a10.1002/jpln.202000496$$gp. jpln.202000496$$n3$$p320-328$$tJournal of plant nutrition and soil science$$v184$$x1522-2624$$y2021 000892378 8564_ $$uhttps://juser.fz-juelich.de/record/892378/files/jpln.202000496.pdf$$yOpenAccess 000892378 8767_ $$d2021-05-05$$eHybrid-OA$$jDEAL$$lDEAL: Wiley 000892378 909CO $$ooai:juser.fz-juelich.de:892378$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 000892378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185044$$aForschungszentrum Jülich$$b0$$kFZJ 000892378 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165576$$aForschungszentrum Jülich$$b5$$kFZJ 000892378 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0 000892378 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1 000892378 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000892378 9141_ $$y2021 000892378 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger 000892378 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000892378 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PLANT NUTR SOIL SC : 2019$$d2021-01-27 000892378 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27 000892378 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000892378 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger 000892378 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27 000892378 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000892378 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000892378 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000892378 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019 000892378 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000892378 980__ $$ajournal 000892378 980__ $$aVDB 000892378 980__ $$aI:(DE-Juel1)IBG-3-20101118 000892378 980__ $$aAPC 000892378 980__ $$aUNRESTRICTED 000892378 9801_ $$aAPC 000892378 9801_ $$aFullTexts