000892381 001__ 892381
000892381 005__ 20240725202005.0
000892381 0247_ $$2doi$$a10.1021/acs.jpclett.1c00925
000892381 0247_ $$2Handle$$a2128/27763
000892381 0247_ $$2pmid$$a33944567
000892381 0247_ $$2WOS$$aWOS:000651787900010
000892381 037__ $$aFZJ-2021-02042
000892381 041__ $$aEnglish
000892381 082__ $$a530
000892381 1001_ $$00000-0003-4476-1322$$aAbramchuk, Mykola$$b0
000892381 245__ $$aEnergetic Stability and Its Role in the Mechanism of Ionic Transport in NASICON-Type Solid-State Electrolyte Li 1+ x Al x Ti 2– x (PO 4 ) 3
000892381 260__ $$aWashington, DC$$bACS$$c2021
000892381 3367_ $$2DRIVER$$aarticle
000892381 3367_ $$2DataCite$$aOutput Types/Journal article
000892381 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721884667_5581
000892381 3367_ $$2BibTeX$$aARTICLE
000892381 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892381 3367_ $$00$$2EndNote$$aJournal Article
000892381 520__ $$aWe apply high-temperature oxide melt solution calorimetry to assess the thermodynamic properties of the material Li1+xAlxTi2–x(PO4)3, which has been broadly recognized as one of the best Li-ion-conducting solid electrolytes of the NASICON family. The experimental results reveal large exothermic enthalpies of formation from binary oxides (ΔHf,ox°) and elements (ΔHf,el°) for all compositions in the range 0 ≤ x ≤ 0.5. This indicates substantial stability of Li1+xAlxTi2–x(PO4)3, driven by thermodynamics and not just kinetics, during long-term battery operation. The stability increases with increasing Al3+ content. Furthermore, the dependence of the formation enthalpy on the Al3+ content shows a change in behavior at x = 0.3, a composition near which the Li+ conductivity reaches the highest values. The strong correlation among thermodynamic stability, ionic transport, and clustering is a general phenomenon in ionic conductors that is independent of the crystal structure as well as the type of charge carrier. Therefore, the thermodynamic results can serve as guidelines for the selection of compositions with potentially the highest Li+ conductivity among different NASICON-type series with variable dopant contents.
000892381 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000892381 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892381 7001_ $$00000-0001-5639-2590$$aVoskanyan, Albert A.$$b1
000892381 7001_ $$0P:(DE-Juel1)145894$$aArinicheva, Yulia$$b2$$eCorresponding author
000892381 7001_ $$0P:(DE-HGF)0$$aLilova, Kristina$$b3
000892381 7001_ $$00000-0002-8121-1971$$aSubramani, Tamilarasan$$b4
000892381 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b5
000892381 7001_ $$0P:(DE-Juel1)156509$$aDashjav, Enkhtsetseg$$b6
000892381 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b7
000892381 7001_ $$00000-0002-3260-0364$$aNavrotsky, Alexandra$$b8
000892381 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.1c00925$$gp. 4400 - 4406$$nXXX$$p4400 - 4406$$tThe journal of physical chemistry letters$$v12$$x1948-7185$$y2021
000892381 8564_ $$uhttps://juser.fz-juelich.de/record/892381/files/Abramchuk%20LATP%204-23-21.docx$$yPublished on 2021-05-04. Available in OpenAccess from 2022-05-04.
000892381 8564_ $$uhttps://juser.fz-juelich.de/record/892381/files/Abramchuk%20LATP%20SI%204-23-21.docx$$yPublished on 2021-05-04. Available in OpenAccess from 2022-05-04.
000892381 8564_ $$uhttps://juser.fz-juelich.de/record/892381/files/acs.jpclett.1c00925-1.pdf$$yRestricted
000892381 909CO $$ooai:juser.fz-juelich.de:892381$$pdnbdelivery$$popenaire$$pdriver$$pVDB$$popen_access
000892381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145894$$aForschungszentrum Jülich$$b2$$kFZJ
000892381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b5$$kFZJ
000892381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich$$b6$$kFZJ
000892381 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b7$$kFZJ
000892381 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000892381 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000892381 9141_ $$y2021
000892381 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000892381 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000892381 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000892381 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000892381 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2019$$d2021-01-27
000892381 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000892381 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000892381 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000892381 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000892381 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000892381 920__ $$lyes
000892381 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000892381 980__ $$ajournal
000892381 980__ $$aVDB
000892381 980__ $$aI:(DE-Juel1)IEK-1-20101013
000892381 980__ $$aUNRESTRICTED
000892381 9801_ $$aFullTexts
000892381 981__ $$aI:(DE-Juel1)IMD-2-20101013