001     892381
005     20240725202005.0
024 7 _ |a 10.1021/acs.jpclett.1c00925
|2 doi
024 7 _ |a 2128/27763
|2 Handle
024 7 _ |a 33944567
|2 pmid
024 7 _ |a WOS:000651787900010
|2 WOS
037 _ _ |a FZJ-2021-02042
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Abramchuk, Mykola
|0 0000-0003-4476-1322
|b 0
245 _ _ |a Energetic Stability and Its Role in the Mechanism of Ionic Transport in NASICON-Type Solid-State Electrolyte Li 1+ x Al x Ti 2– x (PO 4 ) 3
260 _ _ |a Washington, DC
|c 2021
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721884667_5581
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We apply high-temperature oxide melt solution calorimetry to assess the thermodynamic properties of the material Li1+xAlxTi2–x(PO4)3, which has been broadly recognized as one of the best Li-ion-conducting solid electrolytes of the NASICON family. The experimental results reveal large exothermic enthalpies of formation from binary oxides (ΔHf,ox°) and elements (ΔHf,el°) for all compositions in the range 0 ≤ x ≤ 0.5. This indicates substantial stability of Li1+xAlxTi2–x(PO4)3, driven by thermodynamics and not just kinetics, during long-term battery operation. The stability increases with increasing Al3+ content. Furthermore, the dependence of the formation enthalpy on the Al3+ content shows a change in behavior at x = 0.3, a composition near which the Li+ conductivity reaches the highest values. The strong correlation among thermodynamic stability, ionic transport, and clustering is a general phenomenon in ionic conductors that is independent of the crystal structure as well as the type of charge carrier. Therefore, the thermodynamic results can serve as guidelines for the selection of compositions with potentially the highest Li+ conductivity among different NASICON-type series with variable dopant contents.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Voskanyan, Albert A.
|0 0000-0001-5639-2590
|b 1
700 1 _ |a Arinicheva, Yulia
|0 P:(DE-Juel1)145894
|b 2
|e Corresponding author
700 1 _ |a Lilova, Kristina
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Subramani, Tamilarasan
|0 0000-0002-8121-1971
|b 4
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 5
700 1 _ |a Dashjav, Enkhtsetseg
|0 P:(DE-Juel1)156509
|b 6
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 7
700 1 _ |a Navrotsky, Alexandra
|0 0000-0002-3260-0364
|b 8
773 _ _ |a 10.1021/acs.jpclett.1c00925
|g p. 4400 - 4406
|0 PERI:(DE-600)2522838-9
|n XXX
|p 4400 - 4406
|t The journal of physical chemistry letters
|v 12
|y 2021
|x 1948-7185
856 4 _ |u https://juser.fz-juelich.de/record/892381/files/Abramchuk%20LATP%204-23-21.docx
|y Published on 2021-05-04. Available in OpenAccess from 2022-05-04.
856 4 _ |u https://juser.fz-juelich.de/record/892381/files/Abramchuk%20LATP%20SI%204-23-21.docx
|y Published on 2021-05-04. Available in OpenAccess from 2022-05-04.
856 4 _ |u https://juser.fz-juelich.de/record/892381/files/acs.jpclett.1c00925-1.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:892381
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145894
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145623
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM LETT : 2019
|d 2021-01-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J PHYS CHEM LETT : 2019
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21