001     892382
005     20240712100905.0
024 7 _ |2 doi
|a 10.5194/acp-2020-843
024 7 _ |2 Handle
|a 2128/27764
037 _ _ |a FZJ-2021-02043
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Thomas, Max
|b 0
245 _ _ |a Stratospheric carbon isotope fractionation and tropospheric histories of CFC-11, CFC-12 and CFC-113 isotopologues
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1620646335_30751
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a We present novel measurements of the carbon isotope composition of CFC-11 (CCl3F), CFC-12 (CCl2F2), and CFC-113 (CF2ClCFCl2), three atmospheric trace gases that are important for both stratospheric ozone depletion and global warming. These measurements were carried out on air samples collected in the stratosphere – the main sink region for these gases – and on air extracted from deep polar firn snow. We quantify, for the first time, the apparent isotopic fractionation, εapp(13C), for these gases as they are destroyed in the high- and mid-latitude stratosphere: εapp(CFC-12, high-lat) = (−20.2 ± 4.4) ‰ and εapp(CFC-113, high-lat) = (−9.4 ± 4.4) ‰, εapp(CFC-12, mid-lat) = (−30.3 ± 10.7) ‰, and εapp(CFC-113, mid-lat) = (−34.4 ± 9.8) ‰. Our CFC-11 measurements were not sufficient to calculate εapp(CFC-11) so we instead used previously reported photolytic fractionation for CFC-11 and CFC-12 to scale our εapp(CFC-12), resulting in εapp(CFC-11, high-lat) = (−7.8 ± 1.7) ‰ and εapp(CFC-11, mid-lat) = (−11.7 ± 4.2) ‰. Measurements of firn air were used to construct histories of the tropospheric isotopic composition, δT(13C), for CFC-11 (1950s to 2009), CFC-12 (1950s to 2009), and CFC-113 (1970s to 2009) – with δT(13C) increasing for each gas. We used εapp(high-lat), which were derived from more data, and a constant isotopic composition of emissions, δE(13C), to model δT(13C, CFC-11), δT(13C, CFC-12), and δT(13C, CFC-113). For CFC-11 and CFC-12, modelled δT(13C) was consistent with measured δT(13C) for the entire period covered by the measurements, suggesting no dramatic change in δE(13C, CFC-11) or δE(13C, CFC-12) has occurred since the 1950s. For CFC-113, our modelled δT(13C, CFC-113) did not agree with our measurements earlier than 1980. While this discrepancy may be indicative of a change in δE(13C, CFC-113), it is premature to assign one. Our modelling predicts increasing δT(13C, CFC-11), δT(13C, CFC-12), and δT(13C, CFC-113) into the future. We investigated the effect of recently reported new CFC-11 emissions on background δT(13C, CFC-11) by fixing model emissions after 2012, and comparing δT(13C, CFC-11) in this scenario to the model base case. The difference in δT(13C, CFC-11) between these scenarios was 1.4 ‰ in 2050. This difference is smaller than our model uncertainty envelope and would therefore require improved modelling and measurement precision, as well as better quantified isotopic source compositions, to detect.
536 _ _ |0 G:(DE-HGF)POF3-244
|a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|c POF3-244
|f POF III
|x 0
536 _ _ |0 G:(EU-Grant)678904
|a EXC3ITE - EXploring Chemistry, Composition and Circulation in the stratosphere with InnovativeTEchnologies (678904)
|c 678904
|f ERC-2015-STG
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)177681
|a Laube, Johannes C.
|b 1
|e Corresponding author
700 1 _ |0 0000-0002-1553-4043
|a Kaiser, Jan
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Allin, Samuel
|b 3
700 1 _ |0 0000-0002-6820-2296
|a Martinerie, Patricia
|b 4
700 1 _ |0 0000-0002-5372-8148
|a Mulvaney, Robert
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Ridley, Anna
|b 6
700 1 _ |0 0000-0002-6688-8968
|a Röckmann, Thomas
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Sturges, William T.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Witrant, Emmanuel
|b 9
773 _ _ |0 PERI:(DE-600)2069857-4
|a https://doi.org/10.5194/acp-2020-843
|p 843
|t Atmospheric chemistry and physics / Discussions
|v 2020
|x 1680-7367
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/892382/files/acp-2020-843.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892382
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177681
|a Forschungszentrum Jülich
|b 1
|k FZJ
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 0
914 1 _ |y 2021
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-09-08
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21