000892391 001__ 892391 000892391 005__ 20210902140218.0 000892391 0247_ $$2doi$$a10.1016/j.ymben.2021.03.011 000892391 0247_ $$2ISSN$$a1096-7176 000892391 0247_ $$2ISSN$$a1096-7184 000892391 0247_ $$2Handle$$a2128/27740 000892391 0247_ $$2altmetric$$aaltmetric:104225871 000892391 0247_ $$2pmid$$a33865980 000892391 0247_ $$2WOS$$aWOS:000658808700005 000892391 037__ $$aFZJ-2021-02052 000892391 082__ $$a610 000892391 1001_ $$00000-0003-4420-5609$$aTiso, Till$$b0 000892391 245__ $$aTowards bio-upcycling of polyethylene terephthalate 000892391 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021 000892391 3367_ $$2DRIVER$$aarticle 000892391 3367_ $$2DataCite$$aOutput Types/Journal article 000892391 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630575340_18928 000892391 3367_ $$2BibTeX$$aARTICLE 000892391 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000892391 3367_ $$00$$2EndNote$$aJournal Article 000892391 500__ $$aBiotechnologie 1 000892391 520__ $$aOver 359 million tons of plastics were produced worldwide in 2018, with significant growth expected in the near future, resulting in the global challenge of end-of-life management. The recent identification of enzymes that degrade plastics previously considered non-biodegradable opens up opportunities to steer the plastic recycling industry into the realm of biotechnology.Here, the sequential conversion of post-consumer polyethylene terephthalate (PET) into two types of bioplastics is presented: a medium chain-length polyhydroxyalkanoate (PHA) and a novel bio-based poly(amide urethane) (bio-PU). PET films are hydrolyzed by a thermostable polyester hydrolase yielding highly pure terephthalate and ethylene glycol. The obtained hydrolysate is used directly as a feedstock for a terephthalate-degrading Pseudomonas umsongensis GO16, also evolved to efficiently metabolize ethylene glycol, to produce PHA. The strain is further modified to secrete hydroxyalkanoyloxy-alkanoates (HAAs), which are used as monomers for the chemo-catalytic synthesis of bio-PU. In short, a novel value-chain for PET upcycling is shown that circumvents the costly purification of PET monomers, adding technological flexibility to the global challenge of end-of-life management of plastics. 000892391 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0 000892391 588__ $$aDataset connected to DataCite 000892391 7001_ $$0P:(DE-HGF)0$$aNarancic, Tanja$$b1 000892391 7001_ $$00000-0003-3876-1350$$aWei, Ren$$b2 000892391 7001_ $$00000-0002-4920-7024$$aPollet, Eric$$b3 000892391 7001_ $$0P:(DE-HGF)0$$aBeagan, Niall$$b4 000892391 7001_ $$0P:(DE-HGF)0$$aSchröder, Katja$$b5 000892391 7001_ $$0P:(DE-HGF)0$$aHonak, Annett$$b6 000892391 7001_ $$0P:(DE-HGF)0$$aJiang, Mengying$$b7 000892391 7001_ $$0P:(DE-HGF)0$$aKenny, Shane T.$$b8 000892391 7001_ $$0P:(DE-Juel1)176653$$aWierckx, Nick$$b9 000892391 7001_ $$0P:(DE-HGF)0$$aPerrin, Rémi$$b10 000892391 7001_ $$0P:(DE-HGF)0$$aAvérous, Luc$$b11 000892391 7001_ $$00000-0002-5730-6663$$aZimmermann, Wolfgang$$b12 000892391 7001_ $$0P:(DE-HGF)0$$aO'Connor, Kevin$$b13 000892391 7001_ $$00000-0003-0961-4976$$aBlank, Lars M.$$b14$$eCorresponding author 000892391 773__ $$0PERI:(DE-600)1471017-1$$a10.1016/j.ymben.2021.03.011$$gVol. 66, p. 167 - 178$$p167 - 178$$tMetabolic engineering$$v66$$x1096-7176$$y2021 000892391 8564_ $$uhttps://juser.fz-juelich.de/record/892391/files/1-s2.0-S1096717621000471-main.pdf$$yOpenAccess 000892391 909CO $$ooai:juser.fz-juelich.de:892391$$pdnbdelivery$$pdriver$$pVDB$$popenaire$$popen_access 000892391 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176653$$aForschungszentrum Jülich$$b9$$kFZJ 000892391 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0 000892391 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000892391 9141_ $$y2021 000892391 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28 000892391 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000892391 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETAB ENG : 2019$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMETAB ENG : 2019$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000892391 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28 000892391 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger 000892391 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28 000892391 920__ $$lyes 000892391 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0 000892391 980__ $$ajournal 000892391 980__ $$aVDB 000892391 980__ $$aI:(DE-Juel1)IBG-1-20101118 000892391 980__ $$aUNRESTRICTED 000892391 9801_ $$aFullTexts